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NOTATION 

A       dummy integration variable for area 

Aci      surface area between the mass of material compacted by the landing 
surface and the mass of uncrushed crushable material 

Acih     horizontal planar projection of Aci 

Ap0 surface area of lower portion of payload over which shear and/or 
normal stresses act to decelerate payload 

Apoh     horizontal planar projection of Apo and, in the absence of shear 
effects, Api 

Api      surface area between the mass of material compacted by the payload 
and the mass of uncrushed crushable material 

Agh      horizontal cross-sectional area in the volume Vc of figures 3 
and 4 (the volume that would lie beneath the landing surface if 
there had been no crushing) 

b       dimensional dummy integration variable used in equation (A27); 
E /R2 - r2 

bp       dimensional dummy integration variable used in equation (A29); 
= /R 2_ ~ 2 - vKp   rp 

e       dimensionless variable describing the relative motion of payload 

penetration; defined as        in equation (A39) 
EkRP 

e       maximum value of e during payload penetration 

RP Fci(y)   identical to Fcl(z) if — y is substituted for z 
K 

Fcl(z) dimensionless vertical crushing force acting over area Acl and 
tending to decelerate the mass above Acl; defined in equation 
(A 36) 

F (e) dimensionless vertical crushing force acting over area Api and 
tending to decelerate the mass above Apl; defined in equation 
(A45) 

g       general symbol for acceleration due to gravity 

ge      value of g on earth (32.17 ft/sec2 herein) 

gL      value of g at the landing site (12.3 ft/sec2 herein) 



hc        local height of the volume which would lie beneath the landing sur- 
face if there had been no crushing; the local height of Vc; see 
figures 2, 3, and 4 

hci       local height of the compacted volume of material compacted by the 
landing surface; the local height of mci; defined in equation 
(A12); see figures 2, 3, and 4 

hpj       local height of the compacted volume of material compacted by the 
payload; the local height of mpi; defined in equation (A12); see 
figures 2, 3, and 4 

/ge(SEA)\/Ed\ /   mco  \ 
J defined in equation (17) as  =—)( — )( 1 mG \  u0

2  /v^/VV)+ "W 
j dummy integration variable for z in equations (A37) and (A49) 

TTRp
2a0 

Kp        defined in equation (A39) as 

KR        defined in equation (A33) as 

"po^dSe 

TrR2a0 

L distance between the fictitious compacted region determined by e^ 
on the landing surface and that on the payload (or the payload 
itself, in the absence of penetration); evaluated in equation 
(5) 

£ variable used as d£ to define a length element of a rod of 
crushable material; used in developing equation (All) 

mco       original mass of uncrushed crushable material; see figures 2(a), 
3(a), and 4(a) 

mcx       mass of material compacted by the landing surface; mass of Vci; 
see figures 2 through 4 

nip0       mass of payload; see figures 2 through 4 

Hip!       mass of material compacted by the payload; see figures 2(c), 3(c), 
4(c) 

mpl       first time derivative of mpi 

m(z)      dimensionless mass defined in equation (A34) as 

mcr(y,e)   dimensionless mass defined in equation (A44) as 

VI 

"po + mco " mci 
mpo 

mco _ mcl " mpl 

mpo 



V) + mpi 
m  (e)     dimensionless mass defined in equation (A42) as   
pen n m 

R
P /    u0

2 

Npii        defined in equation (23) as — I 1 + 

po 

RU      .   u0^™ x„ ^H--" 1-, «  R  r ■ 2 R 
a Pmax6e P 

1 + (mco/mp0) 
Nmu        defined in equation (24) as 

[l + (U0
2/2£dnpmaxgeRp)]

2 

Wc0 
Nma        defined in equation (25) as   (see also eq. (26) 

(PcmSe^3 

for payload penetration with the simplified design) 

n^pc       desired value of nn ueb Pmax 

nmcj        maximum permissible value of np   (2000 herein) 

np g loading with n ge as the payload deceleration 

nPmax      maximum value of np that occurs during impact stroke 

q absolute displacement of uncrushed crushable material after 
initial contact with landing surface; see figures 2 through 4 

q,q        first time derivatives of q and q 

q,qp       second time derivatives of q and qp 

qp absolute displacement of payload after initial contact between 
crushable material and landing surface; qp = q in absence 
of payload penetration; see figures 2 through 4 

^max'Qpmax  values of q and q  at end of impact stroke 

Qs value of q (q = qp) at which payload penetration occurs or 
would occur if unbonded 

R overall radius for spherical system 

Rp payload radius for spherical system 

r polar radial coordinate of point in Acl, where coordinate is 
measured in a horizontal cross section for spherical 
geometry; see figure 4(b) and equation (A25) 

rp polar radial coordinate of point in Apl, where coordinate is 
measured in a horizontal cross section for spherical 
geometry; see figure 4(c) 

vii 



SEA specific energy absorption; energy absorbed per unit weight of 
the absorber; defined in equation (8) in terms of the 
variables used herein 

s dimensionless dummy integration variable used in equation (A36); 
= b 
" R 

Sp dimensionless dummy integration variable used in equation (A45); 

= h. 
"RP 

t time; used for time derivative interchangeably with dot 

U velocity of the uncrushed crushable material; defined in 

equation (A16) as q = -rp- 

U0 value of U at the instant the crushable material hits the 
landing surface (300 ft/sec herein) 

Vc volume that would lie beneath the landing surface if there had 
been no crushing; shown in figures 3 and 4; defined in 
equation (A14) 

Vc  ,Vcl    maximum values of Vc and Vci, that is, the values reached at -max' '-•'•max the end of the impact stroke 

Vci compacted volume of material compacted by the landing surface; 
the volume of mcl 

Vp volume swept out by the payload as a result of the relative 
motion of penetration; defined in equation (A14) 

Vpj_ compacted volume of material compacted by the payload; the 
volume of mpi 

v dimensionless velocity of the uncrushed crushable material; 

J *■     J •     x.-   „rll     dq/dt  _    U   _ dy _  /R- 

defined in equation (A54) as   n   — =      — = -¥- -  w /— 
/nmdgeRp  /nmdgeRp   X   >/ P 

vn value of v at the instant the crushable material hits the 
landing surface 

v_ dimensionless velocity of the payload; defined in equa- 
dqP/dt     de  dy  dyP tion (A54) as     , £]< _ + _L E __ 

/nmdSeRp 

v value of v at the start of payload penetration, if any 

viii 



Wco original earth weight of uncrushed crushable material, mcoge 

Wp0 earth weight of payload, m g 

w dimensionless velocity -of the uncrushed crushable material; 

defined in equation (A33) as 

w 

z 

^mdSeR 

value of   w    at the instant the crushable material hits  the 
landing surface 

s value of    w    at the start of payload penetration,   if any 
/n^jgp 

—  
RP 

y dimensionless displacement defined in equation (A39) as 

1_ =  L_ 
RP 

= z Rp 

yp dimensionless payload displacement defined in equation (A54) as 
qp 
n- = £ke + y Kp 

ymax'yPmax   values of y and yp at end of impact stroke 

ys value of y at the start of payload penetration, if any 

z dimensionless displacement defined in equation (A33) 

Zo value of z at n-n = nn a ^   Pmax 

zmax        value of z at end of impact stroke 

^max 
Pmax R 

zs value of    z    at the start of payload penetration,   if any 

a angle between normal to stressed area and direction of maximum 
normal  crushing stress 

nPm ax 
ndes 

compacting strain of crushable material; more detailed 
definition given following equation (1) 

IX 



Ejj fictitious value of    e^    assumed for design purposes;   always  less 
than    em 

ek compacting strain when it is uniform throughout hypothetical 
crushable material;   e^    determines  the surface for stress evaluation 
and can be specialized in governing equations  for simplifying 
approximations 

em value of    efc    for actual  crushable material (0.8 herein) 

6_ angle shown in figure 4(c)   and used in derivation of equation   (A28) 

5 dummy integration variable for    y 

pck uniform density of hypothetical  crushable material in swept-out 
volumes such as    Vc    in figure 4;  pck    can be specialized as  zero 
to neglect variable mass without implying a massless  crushable 
casing 

pcm uniform density of actual  crushable material 

Pp payload packaging density;   defined in equation  (A43)   as 

"po 

(4/3)^Rp3 

3pR defined in equation (A35) as 
mpo 

(4/3) TTR3 

a "mostly normal" and "mostly static" crushing stress of crushable 
material, averaged over maximum possible stroke prior to compacting 

a0 maximum of a as defined in equations (2) and (A24) 

Opo normal stress on the payload prior to penetration 

apok Op0 under assumption Op0 = o~Q^  = constant 

av vertical component of a 

ov' dynamic value of av as defined following equation (A7) 

°vpo vertical component of normal stress on the payload 

<j) angle shown in figure 4(b) and used in derivation of equation (A27) 

<J> angle shown in figure 4(c) and used in derivation of equation (A28) 



APPROXIMATE ANALYTICAL MODELS FOR LANDING ENERGY ABSORPTION, 

INCLUDING THE EFFECT OF PENETRATION BY THE PAYLOAD 

INTO ITS CRUSHABLE CASING 

Robert W. Warner 

Ames Research Center 

SUMMARY 

Two approximate analytical models are defined for a landing configuration 
in which a spherical payload can sometimes penetrate into its crushable casing. 
Results for both models are found to agree reasonably well with two previous 
experimental measurements. Design examples are presented for an impact veloc- 
ity of 300 ft/sec. These are based on choices of zero or "perfect" payload 
bonding, and of either a balsa-like or honeycomb-like class of crushable mate- 
rial. The greatest difference between the models for these examples is a 29- 
percent discrepancy in the required maximum crushing stress. A particular 
pair of examples gives the unexpected result that penetration can provide a 
decrease in crushable material weight by a factor greater than 4 when the 
honeycomb-like class of material is required without penetration, but the more 
efficient balsa-like class is feasible with penetration. 

INTRODUCTION 

One means proposed for providing information on lunar and planetary 
surfaces consists of an unmanned instrumentation system that is hard landed 
(with or without terminal guidance) but designed to survive the impact.  For 
such a landing, a crushable casing is one means for absorbing landing energy 
so the payload can survive and transmit information during and after the 
impact.  The advantage of this approach depends greatly on how light the 
crushable casing can be made for a given impact velocity. 

Various aspects of the design of crushable casings have been 
investigated in references 1 through 9, but without including the effect of 
penetration by the payload into the casing. The primary purpose of the pres- 
ent paper is to evaluate that effect analytically.  For this purpose, fairly 
general equations of motion are derived for the payload and the crushable 
material. These equations are then specialized for two approximate analytical 
models in which the payload and casing are spherical. The analytical models 
will be used in a number of design examples so that the effect of payload 
penetration can be evaluated and also one model compared with the other. The 
two models will also be compared with earlier models that do not permit 
penetration and with the test results of reference 10 and a private 
communication.l 

iDonald R. Cundall, December 1967. 



OUTLINE OF THEORY 

Properties of Typical Crushable Material 

Material properties are an essential input to the theoretical 
development. A typical crushable material for landing impact energy absorp- 
tion has a stress-strain curve similar to curve ABODE in figure 1(a). The 
material is elastic from point A to point B, and there is rebound between 
points D and E.  (The rebound should be as small as possible.)  Between points 
B and D there is a large volume change; and the crushing stress is relatively 
constant, with an average value a    indicated by the horizontal dotted line 
in figure 1(a).  Point C, where the crushing stress begins to rise abruptly, 
is called the compacting strain e and ranges from 0.6 for close-packed 
crushable materials to nearly 1.0 for open crushable structures. 

The area enclosed by the stress-strain curve ABODE is the energy 
absorbed per unit volume of crushable material. This energy is maximized for 
a maximum permissible crushing stress (which determines the maximum landing 
vehicle deceleration for a given configuration) if the stress-strain curve 
approaches a rectangle. Hence the material is not strained beyond point D in 
figure 1(a), where the stress is equal to the prior maximum (point B), even 
though the stress could go higher as shown.  If the initial peak at B is too 
high to approximate a rectangle, it can sometimes be reduced by precrushing. 
A less desirable alternative is to accept the stress-strain curve but modify 
the load-deflection curve by changing the shape of the crushable material. 

Stress-strain and load-deflection curves for balsa wood, plastic foam, 
and honeycomb are given in references 11 through 14. These curves have been 
determined by dynamic crushing tests and by nearly static tests of specimens 
having uniform cross sections.  Figure 1(b) is a sketch of a crushing test in 
which the specimen is compressed uniformly across the cross section by a 
plate, and figure 1(c) shows a test in which the specimen is penetrated by a 
plunger.  In both tests, the material crushes in layers at a loaded surface, 
which may be at either end of the specimen in the case of the plate loading. 

It should be noted that a certain (exaggerated) amount of material is 
shown trailing outboard of the plunger in figure 1(c) due to shear resistance. 
This shear effect, as well as friction, causes a difference in the crushing 
loads of figures 1(b) and 1(c).  In the case of balsa wood, however, refer- 
ence 7 indicates that this difference is small, while reference 13 indicates 
that it ranges from 5 to 15 percent (for a range of plunger sizes). 

It should also be noted that dynamic and nearly static crushing tests 
give different results.  In fact, references 11 and 13 suggest ratios of 
static to dynamic crushing stress from 0.69 to 0.73 for various materials. 
Since the maximum velocity in the dynamic tests was 108 ft/sec, the dynamic 
effect is probably not due to variable mass (i.e., the accumulation of crushed 
material at a loaded surface) but rather due to damping and dynamic buckling 
(i.e., coupling between vertical and horizontal velocity). Unfortunately, 
the effects of higher velocities on damping and dynamic buckling are not 
established for the present materials. 



Summary of Fundamental Assumptions and Limitations 

In contrast to the typical material just discussed, the material 
assumed for theoretical analysis has a perfectly rectangular stress-strain 
curve (a so-called "rigid plastic" shape). This curve is represented by the 
dashed lines in figure 1(a).  It is shown bounded by the compacting strain e 
and the average crushing stress a    of the typical material.  In this case, 
the energy absorbed per unit volume will not match that of the typical material 
perfectly, but the boundaries of the rectangle can be adjusted slightly if 
need be. 

There are a number of other analytical assumptions that pertain to the 
crushable material, and there are several that do not.  For convenience, all 
fundamental assumptions and limitations are listed in the present section as 
follows: 

1. Rebound is assumed absent. 

2. It is assumed that the effects of shear resistance, end fixity, and 
Poisson's ratio are adequately incorporated in the analysis because 
of their presence in the crushing tests that determine the so-called 
"mostly normal" and "mostly static" crushing stress (a, a0, and ov; 
see Notation). 

3. The "mostly normal" and "mostly static" crushing stress a is also 
assumed to incorporate the dynamic effects of damping and dynamic 
buckling. This means that dynamic tests should be used to determine 
a   (or static dynamic ratios, such as those deduced earlier from ref- 
erences 11 and 13, should be applied).  The velocities in the 
dynamic tests should not be large enough, however, to cause signifi- 
cant variable-mass effects, which are incorporated (when desired) in 
the present equations of motion. 

4. Shear deformations, such as the trailing of material outboard of the 
plunger in figure 1(c), are neglected. 

5. Separate vertical rods of material are assumed to crush vertically 
in the energy-absorbing process. 

6. The material is assumed to compress to the same compacted strain 
along any axis, regardless of the axis of maximum normal crushing 
stress. 

7. It is assumed that each particle in the uncrushed crushable material 
is moving at the same vertical velocity at a given instant and that 
the crushed material also has a uniform particle velocity, but a dif- 
ferent one from that of the uncrushed material. This implies the 
following corollary assumptions: 

a. Each successive layer of crushable material undergoes a 
jump in velocity as it moves from the uncrushed to the 
crushed region. 



b. The elastic stress waves that established the uniform 
velocities must travel far faster than those velocities 
(i.e., the uniform velocities are subsonic). 

c. The deformation waves resulting from the elastic stress 
waves must be small enough not to affect the uniform 
velocities . 

8. For landing geometries in which there is doubt as to where the crush- 
ing by layers will start, it is assumed to start at the impacted end 
of the crushable material (in keeping with experimental observations, 
except at certain impact velocities too low to be of interest). 
Thus, if figures 1(b) and 1(c) were considered to represent impact 
tests, the location shown for the crushed material requires that the 
material has been impacted by the plate or the plunger.  If the 
crushable material had impacted the landing surface in figure 1(c), 
with the plunger resting on top of the material, there would have to 
be some crushing at the landing surface in conjunction with the 
plunger penetration (or "payload penetration"). 

9. It is assumed that there is no section of crushable material weak 
enough to permit penetration by any crushable material (i.e., pene- 
tration by anything but the payload).  The validity of this assump- 
tion is investigated in a later section. 

10. The density of the crushable material is assumed uniform in the 
uncrushed condition. 

11. The compacting strain of the crushable material is assumed uniform. 

12. Pure vertical translation is assumed. 

13. The analysis neglects all ringing and focusing of stress waves. 

14. A weightless exterior cover for the crushable material is assumed 
that is strong enough to prevent shattering of the crushable mate- 
rial.  (For comparison with the experimental results of Cundall and 
of reference 10, however, the mass of the cover employed is assumed 
uniformly dispersed throughout the crushable material.) 

15. When there is payload penetration, that is, relative motion between 
the payload and the crushable material, the two are assumed perfectly 
unbonded. This rules out the interesting design possibility of pene- 
tration despite bonding and means there is no need to include the 
effect of tensile stresses over the upper surface of the payload. 

16. It is assumed that the landing surface is perfectly flat and 
perfectly rigid. 

17. Perfect rigidity is assumed for the payload. 



Summary of Analytical Development 

The general vertically symmetrical landing geometry without tipover or 
horizontal velocity is illustrated in figures 2 and 3, which are used for 
developing the governing equations and for the definition of terms.  (Note that 
with gravity terms being small, "vertical" can be any direction that is both 
parallel to the resultant impact velocity and normal to the landing surface.) 
In figure 2 the major limiting assumption is the absence of shear deformation 
(i.e., there is no compacted material dragged outboard of the payload and no 
compacted material lifted off the landing surface). 

Evaluation of the stress integrals and variable masses in the governing 
equations is greatly facilitated by introducing the compressive compacting 
strain e and assuming that it is uniform throughout the crushable material, 
that is, 

e = e^ = constant (1) 

Figure 3 shows the general vertically symmetrical landing geometry for zero 
shear deformation and the assumption of equation (1). The latter assumption 
is illustrated by the fact that hpi is constant and mcl  is a foreshort- 
ened image of Vc. 

Figure 4 specializes the geometry to concentric spheres (although most 
of the resulting simplifications would be realized as well by concentric 
spherical segments).2 It is further assumed that the crushable material has a 
specific direction for maximum normal crushing stress, that the material has 
been segmented and oriented to make that direction radial, and that stressed 
areas with normals differing by an angle a    from that radial direction feel 
normal stresses o    determined by the law 

a < 90° (2) 

where the restriction a < 90° is required since the load has to be trans- 
ferred from the lower to the upper hemisphere of crushable material, and 
where the restriction is automatically met in all calculations for nonzero 
payload radius.  (See ref. 5 for alternate anisotropic relationships.) 

Governing equations corresponding to the summary just given are 
developed in appendix A. They are specialized for various combinations of 
the following independent assumptions: 

1. Neglect of variable mass effect.  In this assumption the accumulation 
of crushed casing material on the payload and/or the landing surface 
is neglected. The assumption is accomplished by setting p^ = 0. 

2The spheres were selected because of their ability to absorb impact 
energy in any direction (i.e., to handle unoriented impacts). Such impacts 
may occur due to aerodynamically unstable landing configurations, a strong 
laterial wind with a steep landing surface, or terminal guidance failure or 
absence. 



2. Neglect of built-up material effect.  In this assumption stresses are 
evaluated at the surface of infinitely thin sheets of crushed mate- 
rial rather than built-up volumes. The assumption is accomplished 
by setting % = 1. 

3. Neglect of variable resistance to payload penetration.  In this 
assumption the stress and force on the payload retain their initial 
penetration value for the entire penetration stroke. The assumption 
is accomplished by setting Fp0 (e) = 1. 

Appendix A is presented because a relatively complete theoretical 
development, including variable mass, built-up material, and payload penetra- 
tion, is needed in the literature. The development is relegated to an appen- 
dix because the details are not needed to understand the rest of the report. 
If the reader wishes to locate a specific result or derivation, he can refer 
to the various subdivisions of appendix A listed in the Table of Contents. 

DESIGN PROCEDURES FOR SPHERICAL GEOMETRY 

General Design Conditions 

The zero-velocity termination conditions defining the end of impact are 
equations (A46) and (A47).  For a minimum weight design, the termination con- 
ditions should occur when the payload or the compacted material built up on 
it (in the case of payload penetration) touches the compacted material built 
up on the landing surface, that is, when the sphere of radius Rp touches 
the region mci in figure 4(b) or when the two compacted regions touch in 
figure 4(c). The size of the compacted regions is based on the true material 
compacting strain em.  The quantity em is identical to the ek of equa- 
tion (1) except for the optional use of fictitious values for e]< in the 
equations of motion of appendix A.  If a margin of safety is desired, larger 
compacted regions can be envisioned on the basis of a fictitious design 
compacting strain called ed, where 

ed < em (3) 

If L is defined as the distance between the fictitious compacted 
regions at the end of the impact stroke, or between one such region and the 
payload, then the design condition for contact is 

L - W  " ^ " ° <4> 
where Rp is the payload radius and R the overall radius. With e^ 
replaced by e^, it can be deduced from equations (A12) and figure 4 that 

L = R - Rp - -£5£*. (5) 



where qr,    is the maximum absolute payload displacement during impact. 
^Pmax 

!f Qmax is the  corresponding displacement of the uncrushed crushable mate- 
rial, then qp   = qmax i-n the  absence of payload penetration. When 

L > 0, the process is physically realizable, although not a minimum weight 
design for the present spherical geometry. When L < 0, the process is not 
physically realizable; but cases for L < 0 may be recorded in the process of 
seeking L = 0. 

A second design condition, having a less obvious relation to minimum 
weight design, is concerned with the maximum design deceleration nmcjge, 
where ge is the acceleration due to gravity on earth and nmcj the maximum 
design g loading.  If np  ge is the actual payload maximum deceleration, 
the design condition is 

np 
-JS^ g i (6) 
nmd 

For certain types of energy absorbing material or structure, the minimum 
weight design calls for 

Pmax _ ,„. 
nmd 

For other types, any value of np  /nmd satisfying equation (6) may yield a 

minimum weight design, with the critical parameter being a property of the 
crushable casing (such as o0) . 

The quantity np  /nmd ^n equations (6) and (7) is the maximum of the 

quantity np/nm(j in equations (A32) and (A41).  (See also eqs. (A48), (A51), 

(A55), and (A59) for various specializations.)  If variable mass and built-up 
material are neglected in the analysis (by setting pc^ = 0 and ey_  = 1, 
respectively), then np    occurs at q = qp = R/2 in the absence of payload 

penetration, providing q or qp becomes that large. 

A minimum weight design is sought for a given payload mass, mp0, 
payload radius, Rp, impact velocity, U0, design compacting strain, ed, and max- 
imum permissible g loading, nmd, with the material choice being arbitrarily 
limited to two classes of crushable material.  Where equation (7) gives the 
minimum weight design, the quantities to be determined are the overall radius, 
R, the maximum normal stress, a0, and the density, pcm, of the crushable mate- 
rial (from which the weight can be calculated).  If the optimization permits 
equation (6), then a property such as aQ must be specified; and R and pcm 
remain to be determined (with np    a by-product).  In either case, the 

determination requires that a relation between a0 and pcm be known for the 
crushable material, thereby effectively reducing the number of unknowns by 
one. 



The required relation between a0 and pcm can be determined 
experimentally for a variety of materials and stated directly as in refer- 
ence 2 (p. 259).  It is common, however, to introduce a parameter for which 
values are widely known, namely, the specific energy absorption (SEA) which 
is defined as 

/ °o \ 
SEA = em   (8) mypcmgey 

and which should generally be as large as possible. The relation between 
a0  and pcm can be expressed by giving SEA in terms of aQ.    With a = aQ 

and e = em, the product a0em is the area enclosed by the dashed lines in 
figure 1(a), which is the energy absorbed per unit volume. Dividing this 
product by pcinge gives equation (8) and shows SEA to be the energy 
absorbed per unit mass. 

Figure 5 shows the variation of SEA with a0    for a balsa-like class 
of material and a honeycomb-like class of material (neglecting glue-joint 
weight and the effects of high impact velocity and low temperature). The 
equation for SEA in terms of a0 given for the balsa-like material in fig- 
ure 5 is 

SEA = 24,000 ft-lb/lb ,        800 psi = oQ ^ 1,200 psi 

! es) 
SEA = 7-49xl°    ft-lb/lb   , 1,200 psi = a0 <  1,800 psi 

ao 
0.81 

The balsa-like material  is balsa in the sense that the second of equations   (9) 
is  deduced from the curve fit of reference 2   (p.   259)  which  closely approxi- 
mates  the data therein for soliU balsa of various  densities.     The material 
is  considered to be only balsa-like, however, because the first of equations 
(9)   and the dashed portion of the balsa-like curve in figure 5 are assumed to 
be valid for a hypothetical  cored balsa  (for which  cores of material  are 
removed in the radial  direction).     The assumption is  that roughly one-third 
of the material  can be removed from the lightest   (lowest density)   solid balsa, 
giving a    a0    range from 800 to 1,200 psi, without reducing the    SEA    by 
introducing significant buckling, end effects,   and/or Poisson's  ratio effects; 
and this  assumption seems  reasonable.     It should be noted that the only cor- 
roborative  case where    SEA    decreases with increasing    aQ    in reference 4 is 
for dry balsa  (0-percent moisture),   atmospheric pressure,   and an ambient tem- 
perature of approximately 78°  F. 

The curve for the honeycomb-like material is presented in figure 5 so 
that results  can be deduced for lower    SEA    values  and also for the relatively 
common case where    SEA    increases with increasing    a0.    The equation given in 
figure 5 is 

SEA = 478.5 ao
0,ltlt6  ft-lb/lb   , 600 psi £ a0 I  1700 psi (10) 



The material is called honeycomb-like rather than a specified honeycomb 
because equation (10) is deduced from a curve fit in reference 2 (p. 259) 
that rather loosely fits data for several types of aluminum and fiberglass 
honeycomb having a variety of densities.  It should be noted that reference 2 
makes no mention as to whether equations (9) and (10) incorporate the dynamic 
effects of damping and dynamic buckling (see item 3 in "Summary of 
Fundamental Assumptions and Limitations"). 

Design Procedure for Simplified Model Without Payload Penetration 

For the analytical model labeled "simplified" in the present report, it 
is assumed that variable mass can be neglected (setting pck = 0), that built- 
up material can also be neglected (e^ = 1), that gravity forces are insignifi- 
cant (g = 0), and that the resistance to payload penetration is constant 
(Fp0(e) = 1). Under the first three of these assumptions (with the last 
required only for penetration), equations (A55) and (A62) apply (in a simpli- 
fied form with g = 0) and the division of the latter by the former gives 
(with definitions from eq. (A54)) 

Ur 
np/nmd  "pge1^ 

'2  (CR/Rn) - t(2/3)y  ] I max r VJ       LK      ^maxJ ) 
y[(R/Rp) - y] 

(11) 

Equation (A55) is a parabola with np   at y = (R/Rp)/2. Hence, for the 

present restrictive case, np  ge is the acceleration at ymav 
as l°ng as 

IücLA. lud A. 

/max "   (R/Rp)/2.     If    ymax *   (R/Rp)/2, npmaxge    is  the acceleration at 

y =   (R/Rp)/2.     Thus  equation   (11)   can be expressed in terms  of    np as 

Uo2 W1 " C2/3) ay«/*«] 
"Pmax^ (Rp/R)ymax max 

1  R 

Rp 
(12) 

%2 

nPmaxgeRp 
4^       I-iÜEy R    ' max\        3 R    'max, max 

1 L 
2 Rr 

(13) 

If equations   (12)   and  (13)   are multiplied through by    Rp/R    and if the first 
of equations   (A54)   is  used (giving    y =  z       (R/R,,))   the result  is 0    'max        max        VJ 

"o2 

nPmaxgeR 

z       [1  -   (2/3)z       ] maxL v      J  maxJ 

max 

<  1 
max (14) 



nPmaxgeR 
4z2       1 - \ z maxI 3    max 

>  1 
max 

(15) 

Equations   (14)   and  (15), which  are applicable only in the absence of 
payload penetration,   are plotted in figure 6 as     zmax versus uo2/(npmax2e)R- 

Figure 6 can be used to determine    zmax = qmax/R    on the basis of    U0,  R, 
and np       ;   and the payload radius    Rp    simply has   to be small enough not to 

interfere with    q max 

An interesting feature in figure 6 is that z max is determined with no 
knowledge of a0,  mco, or mp0. Once zmax is known, however, mco can be 
found for a given nip0 and a0 according to 

m 
co 

2
^O

RS
     2     /.        2 N 

2    ^axl1       3 zmax m. po (16) 

as derived from equations (A62) and (A39) with g = 0.  It is still not 
necessary to know Rp.  For a minimum weight design, however, Rp must be 
known or determined; and equation (4) must be satisfied according to the 
definition in equation (5).  In addition, the SEA , as defined in equation 
(8), may be known instead of a0. When equations (4), (5), and (8), with 
zmax =  %ax/R = ^Pmax

/R and mc° = (4/3^p
Cm

(R3 " V3 ' are introduced int0 

equation (16), the result is 

ge(SEA) /^ 
Jma 

m co 
1 - (z  /e,) + [(z  /e,)2/3] max d   L max d ' J 

£__ Mm  + m v m/\ po   co/ z  [(1/2) maxL (z  /3)] v max Ji 

(17) 

where the symbol Jma is introduced for convenience. Equation (17) can be 
used to determine mco for a given zmax (which implies knowledge of U0 and 
ge as indicated in fig. 6) if c^,   em, SEA, and mp0 are known (with em 
actually canceling the same quantity in SEA).  In figure 7, equation (17) is 
plotted for ej = 0.7, 0.8, and 0.9.  The three cross-plotted values of Rp/R 
serve as a reminder that figure 7 represents a design for which contact would 
occur between the payload and the compacted material if that material had a 
compacting strain of ej instead of em (see the sketch, fig. 7). 

In the absence of payload penetration, figures 6 and 7 are sufficient 
for the simplified model if R is given and Rp is to be determined.  If 
Rp is given, figures 6 and 7 remain useful as a check and as a means of 
determining zmax> but two different figures, based on Rp, are more useful 
for the original design. The first of these is determined by introducing 
equations (4) and (5) into equations (13) and (12) as a substitute for 
ymax = %iax/Rp = ^Pmax/Rp' yielding 
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Rp Uo
2    4ed

2[l - (Rp/R)]
2(l - (2/3)ed[l - (Rp/R)]) 

np  ge% = V* '   W ' R = '  2£d pmax e P 

0 < rr-  = 1 - 

(18) 

Uo
2    ed[l - (Rp/R)] (l - (2/3)ed[l - (Rp/R)])        j_ < % 

nPmaxgeRp "       (Rp/R) ( 1 - ^[1 - (Rp/R)]} 

_ — < 1 
2e - R - 

(19) 

Equations (18) and (19) are plotted for £d = 0.7, 0.8, and 0.9 in figure 8. 

Figure 9 is the companion to figure 8 and is found by using equations 
(4) and (5) to define a replacement for zmax = qmax/R = 1pmax/

R in e(\ua~ 

tion (17). The Rp/R found in figure 8 then determines JmG in figure 9, 
and Jma determines mc0 as before. The sketches in figures 8 and 9 show 
the same design configuration as that in figure 7, leaving figure 6 as the 
only one for which contact is not required for compacted material based 
on ej. 

Design Procedure for Simplified Model With Payload Penetration 

Payload penetration was not permitted in figures 6 through 9 (because 
of a hypothetical perfect bond).  If penetration is now permitted (because of 
the total absence "of bonding), the first step is to determine whether it will 
occur.  It will occur if the design without penetration gives 

z   > zs (20) 
max   b 

where    zs    is  the dimensionless displacement at which the area of material 
being crushed becomes  large enough to cause sufficient deceleration for pene- 
tration.     The quantity    zs    is  defined by equation  (A58)   as modified by the 
change of variable, ys =  zs(R/Rp).     The modified equation,  plotted in figure 
10,   is 

2zs(l  -  zs) (21) 

The curve is cut off at zs = 0.5, which is the maximum value at which pene- 
tration can occur for the present approximation (as seen by the maximum force 
in eq. (A52)).  Figure 10, while not ultimately essential for design purposes, 
is useful as a check, and the magnitude of zs is significant in evaluating 
the importance of penetration or potential penetration. 
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The first of the two main design figures  for penetration is based partly 
on the first of equations   (A59)   and the last of equations   (A39)  with    g = 0 
and np = np        =  constant.     This yields,   as expected for the present 

assumptions, 

TTIL. 

Pmax      mpoge 
(22) 

Equation   (22)   is used,   together with equation  (21),   equation  (A64)   for    g = 0, 
the  last of equations   (A39),   the first and second of equations   (A54),   and 
equations   (4)   and  (5)   for    zp        = qp      /R,   to identify the variable    Njyj    as 
follows: 

Rr U, 
N RU 2e ,nD      g R d pmax e p 

1  - 
1 -   (4/3)z, 

2(1 Zq) S-*   _J 

(23) 

The purpose in isolating NRJJ is to obtain a single unknown (Rp/R) in terms 
of zs and ej, with a factor that is a function of known quantities (U0, ed, 
np  , ge, Rp). The next step is to isolate a variable for mC0/nL  without 

Rp/R. This is accomplished by dividing equation (21) by the square of equa- 
tion (23). The resulting variable, called Nmu, is 

N„ 
1  +   (mco/mpo) 2zs(l  -  zs) 

mu 
[1 +   (U0V2ednPmaxgeRp)]

2       ^  _   ^/^j^  _   (4/3)zs]/2Cl  -  zs)})' 

Figure  11  is  a plot of    NRU versus Nmu    for    e^ = 0.7,  0.8,   and 0.9, 
(24) 

The plot is constructed by selecting numbers for zs between 0 and 0.5 and 
calculating the corresponding values of NRU and Nmu according to equations 
(23) and (24). A relationship between R and mco is established in figure 
11 in terms of the known quantities U0, £d> np ge, Rp, and mp0 (in con- -max' "-' XP' ailu mP° 
trast to fig. 8 without penetration, where R can be determined from known 
quantities and used in determining mco in fig. 9). The sketch in figure 11 
shows the design condition implicit in equations (4) and (5) for penetration, 
namely, contact between the two regions of compacted material if em were 
replaced by ej. 

A definition and a volume density relationship are useful at this point, 
namely: 

N ma 

Wpo(mco/
mpo) 

3 
(p  g )TTR^ v cmöe' T? 

"CO m CO 

(p g )TTR ' v cmöe  P cm *v 
R 

(25) 

where Wp0 and Wc0 are the original weights of the payload and crushable 
material, respectively. Equation (25) is plotted in figure 12; it is useful 
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with or without payload penetration and does not depend on any assumptions. 
For the case of payload penetration, however,   and for the special  assumptions 
of the simplified design,  equation  (22)   applies  and can be substituted into 
equation   (25)  with equation  (8)   to give 

SEA       /mco , f7„ 
Nm* = W^^1 (26) 

With equation (26), mco/nip0 can be determined from NmCT without knowing pcm. 
Thus figure 12 becomes the companion for figure 11 in an iterative design pro- 
cedure for payload penetration. The procedure is simply to select an initial 
value for mc0/mp0, calculate Nmu in terms of mco/mp0 and known quantities, 
determine NRU from figure 11, evaluate Rp/R in terms of Njyj and known 
quantities, determine NmCT from figure 12, calculate a second value of 
mco/mp0 in terms of NmCT and known quantities, and repeat the process until 
two values of mco/mpo agree to the accuracy permitted by the figures. 

The iterative procedure just described could have been avoided, of 
course, by combining equations (21) through (26) into a polynomial for zs. 
This polynomial could be solved for selected parametric values of 
U0

2/2e,jnp  geRp and SEA/np  emRp, together with values of ed such as those 

selected for the iterative charts, and Rp/R and mco/mp0 could be determined 
accordingly. Such a procedure was avoided, however, because of the strong 
likelihood that a reasonably limited group of parametric values would not have 
sufficiently broad applicability. 

Specialization of Design Procedures for Simplified Model 
to Materials of Figure 5 

Regardless of whether penetration is absent or present, it is apparent 
that all of the design figures (6 through 12) are essentially independent of 
the material or structure selected for energy absorption. To calculate mco 
from figures 7, 9, and 12, however, an SEA has to be selected. With mco 
and R determined by the figures and Rp known in advance, pcm can be calcu- 
lated (with the aid of fig. 12 if desired); and a0    can then be found for the 
selected SEA according to equation (8). All this implies the assumption 
that a material having the calculated properties is available or that a 
corresponding structure can be constructed. 

For the comparison purposes of this paper, however, the materials are 
restricted to a choice between the two classes described in figure 5. With 
figures 6 through 12 having been constructed independently of figure 5 (in 
the interest of generality), the use of figure 5 imposes a trial-and-error (or 
transcendental) solution for those designs in which payload penetration is 
absent.  The trail-and-error solution is aided by incorporating equations (8) 
and (25) into equation (17) to yield 

em^ma 
SEA =   (27) 

(ge£d/uo2)   "   (Jmawpo/aoNmairRp3) 
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On the basis of given values of em, ge>  ed, uo> wpo> Rp> and nPmax
5 pluS 

values of JmCT and Nma determined according to figures 8, 9, and 12, the 
quantities emJma, geed/

uo2> and Jmawpo/Nma^Rp3 in equation (27) can be 
calculated in advance. Equation (27) and figure 5 then become the basis for 
the numerical solution. 

A sample calculation for the trial-and-error solution just described is 
given in appendix B.  It should be noted that the trail and error of appendix 
B would have been eliminated if the SEA had been constant - despite varia- 
tions in a0,   as for the balsa-like curve in figure 5 when a0 < 1,200 psi. 
There is, however, another type of trial and error that occurs when a spe- 
cific value of a0,  rather than np  , is sought.  In this case, calcula- 

tions like those in appendix B (but without the a0  - SEA trials) must be 
performed for successive selections of np    until a0    approaches the 
desired value. 

If (in contrast to appendix B) payload penetration is present, the use of 
the specific materials in figure 5 does not impose a trail-and-error solu- 
tion. The reason is that the unknown mco does not appear in equation (22). 
In addition, the simplicity of equation (22) means that either a0  or np 
can be selected without requiring trial and error. 

A sample calculation for the iterative penetration procedure described 
earlier is given in appendix C for the balsa-like material of figure 5. 
Only three iterations are needed in appendix C because of a fortunate initial 
guess of mco/mp0. The initial guess was based for all calculations on other 
penetration cases or prior examples without penetration, and the worst guess 
required five iterations. When a penetration design is not feasible, either 
the a0 value of equation (22) will be beyond the range of figure 5, or the 
iterations will move off the curves of figures 11 and 12. 

Computer Procedures 

A set of three computer procedures has been programmed to evaluate the 
governing equations of the impact problem for spheres (eqs. (A32), (A37), and 
(A41)) in accordance with the appropriate termination conditions (eqs. (A46) 
and (A47)) and the appropriate design conditions (eqs. (4), (6), and (7)). 
These procedures are described in appendix D.  They can be used to check the 
simplified model designs or to initiate simplified designs and other designs 
based on more complicated models. 

Specifically, of the three computer procedures, two are designs in that 
they automatically iterate initial guesses to determine required crushable 
casing parameters. One of the two design procedures varies the overall radius 
R and the material maximum crushing stress o0 to achieve a desired accel- 
eration, as indicated by equation (6) or equation (7), and a desired ratio of 
stroke to available stroke, as suggested by equation (4). This program is 
applicable only in the absence of payload penetration. The other design 
varies only R for a selected a0  (fixed material once SEA or a plot of 
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SEA versus a0    is selected) and achieves only the desired stroke ratio.  It 
applies both with and without penetration. 

Penetration requires only a search for R since a0    is essentially 
determined in that case regardless of R or the stroke. The reason becomes 
apparent when the first of equations (A41) is modified at the start of pene- 
tration (e = de/dx = 0) by equations (A45), (A42), and the last of equations 
(A39) to give the expected result 

„        ^Rp2°o 
Pmax    ge  mpoge ^«J 

where the approximate equality sign is used because n„ differs slightly 
^max 

from the value at the start of penetration for the detailed model (by at most 
one part in a thousand for the present examples). Equation (28) determines 
a0 for a given nD    regardless of R or the stroke, 

t'max 

The third computer procedure can also be used with or without penetration 
but is not programmed to iterate and produce a design.  Hence it can be used 
only to check a given configuration. 

It should be noted that all three programs permit SEA to be selected 
arbitrarily or calculated (after a0    is selected) according to equations (9) 
and (10) for the materials considered herein. 

Design Procedure for Detailed Model With and 
Without Payload Penetration 

The detailed model is the second of the two approximate analytical 
models. Where the simplified model had pck =0, ek=l, g=0, and 
Fpo(e) = 1, the detailed model has pck = pcm, ek = emJ g ='gL, and from 
equation (A45), 

F  (e) 
po 

/ 

l (esp + l)Sp dsp 

/2eSp + e2 + 1 

The pck = pcm equation means that the detailed model incorporates variable 
mass (accumulating on the payload and/or the landing surface) according to 
the crushable material density, and ek = em implies a finite volume of 
compacted material instead of an infinitely thin sheet to determine the sur- 
face for stress evaluation. The equation g = gL simply incorporates a 
negligibly small gravity term for completeness, and the integral for Fpo(e) 
permits a calculated deviation from a constant resistance to penetration. 

While the computer procedures described in the previous subsection 
constitute an alternative to figures 5 through 12 for the simplified model, 
they constitute the only design procedure presented herein for the detailed 
model. Of course, figures 5 through 12 remain useful as starting points for 
the computer iterations. 
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DESIGN RESULTS AND DISCUSSION FOR SIMPLIFIED AND DETAILED 
MODELS HAVING SPHERICAL GEOMETRY 

Description of. Design Examples and Most General Results 

Thirteen examples have been calculated by the simplified and detailed 
analytical models described in the previous section. The impact velocity 
U0 is taken to be 300 ft/sec for all examples, the material compacting 
strain £m to be 0.8, the design compacting strain e^ to be 0.7, and the 
payload maximum g loading nD    to be 2000 or less. The examples vary r J Fmax 
in the given payload weight Wp0, the given payload radius Rp, the presence 
or absence of a hypothetical perfect bonding, and/or the given material. 
All examples are based on a choice between two classes of crushable 
material - the balsa-like and honeycomb-like materials defined in equations 
(9) and (10) and shown in figure 5.  The desired value of nD   (for which *max 
the label n^es i-s used where needed) is given for some examples and the 
maximum crushing stress a0    for others. 

The results for all examples are presented in table 1 in terms of the 
presence or absence of penetration, the value of nn   (if not given) or of r ^max 
a0 (if not given), the crushable material density PCmge> 

the specific energy 
absorption SEA, the stroke-to-potential-start-of-penetration ratio q„  /qs, 

the overall radius R, the crushable material weight Wco, the total weight 
Wco + Wpo, and the dimensionless unused stroke L/R. When L/R is negative, 
the payload would go too far (slightly, for the present examples) and cause 
excessive accelerations if it were not for the stroke margin of safety given 
by the use (in defining L/R) of the fictitious design compacting strain ed 
rather than the material value em. 

The resulting quantities just listed are presented for the simplified 
and detailed models in table 1; the corresponding ratios of detailed to sim- 
plified results are presented when the results are numerical.  It is apparent 
from the Wco ratios that the simplified model has the lower Wco. 

An important ground rule for the ratios of table 1 is that either the 
an    ratio or the n-r,    ratio is required to be essentially unity. The Fmax 
choice is made, after the simplified model has been calculated, in favor of 
the lightest resulting detailed model. This gives the best weight ratio, 
that is, the ratio closest to unity. 

In view of this choice, it is not surprising that the worst a0 or n„ Fmax 
ratios (of detailed to simplified results) are farther from unity than the 
worst weight ratios.  In fact, the worst ratio of all is 1.2917 for o0 in 
case 1 (except for L/R, where numbers approach zero, fortunately). This 
ratio, although not excessively different from unity, represents a large 
enough difference in required material (within the honeycomb-like category of 
case 1) that a designer would wish to know whether the simplified model is 
numerically more realistic than the detailed model or vice versa. 
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In a footnote of table 1 it is noted that the simplified results are 
"chart" results (derived from figs. 5 through 12) except for the L/R column 
and cases 7 and 12, which are automatic computer results. The two cases 
(both without penetration) were added after the computer design programs 
became available and were calculated by those programs for convenience. 

The simplified results determined by the chart method have been checked 
by the computer checking program (as opposed to a design program). The 
derived computer quantities nD   and q«  /qs had a maximum error of 1 

*max    ^max 
percent relative to the chart method, and the derived computer quantity L/R 
was close to zero (ranging from -0.001781 to 0.001163 with an average of 
-0.000194) as compared to a zero chart value. Slightly larger differences 
between the chart method and the computer checking method occurred for Wco 
and Wco + Wp0, but these differences resulted purely from errors in calcu- 
lating crushable material volumes in the chart method. The chart and compu- 
ter results combined to form smooth plots for the simplified model, as seen 
in figures 13 and 14. 

All numerical results from table 1 are plotted in figures 13 and 14 
except for Wco + Wp0 (which is considered less important than Wco), L/R 
(which is often sporadically variable in sign), cases 3, 5, and the detailed 
model for case 2 (which will be discussed later). Note that the curves for 
the simplified and detailed models are roughly parallel (and only slightly 
curved) over their mutual abscissa range. Hence trends are the same for the 
two models. Even the crossover in figure 14(d) for q   /qs without pay- 

Pmax 
load penetration is almost parallel and thus maintains the trend with only a 
slight comparison reversal between models. 

Effect of Payload Radius (and Payload Packaging Density) 
for Balsa-like and Honeycomb-like Materials 

Without Payload Penetration 

Crushable casing properties and performance are presented in figure 13 
(with and without penetration) as functions of payload radius Rp (with four 
numbers attached for payload packaging density Ppge) for honeycomb-like 
material, a payload weight of 100 lb, and an nD    value of 2000. The cor- Fmax 
responding cases in table 1 are 1, 4, 6, and 7 without penetration and case 2 
(simplified model only) with penetration. 

In the absence of payload penetration, figures 13(a), 13(b), and 13(c) 
show that an increasing Rp (decreasing Ppge) causes Wco, SEA, R, a0, and 
PcmSe t0 increase (with np    held at the maximum permissible value of 

2000, which minimizes Wco according to preliminary calculations). The poten- 
tial penetration ratio qp  /qs exists only for the simplified model at 

Rp = 0.6 ft (among the plotted points), indicating penetration to be impossible 
for the other cases.  Between the two models, the simplified model has the 
lower Wco (slightly), the lower SEA, the higher R, the lower o0, and the 
lower PcmSe- The lower Pcmge is the only apparent reason for the lower 
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Wco. It results from the lower a0, which is made possible by the fact that 
the simplified model sees a higher average stress for a given a0 than does 
the detailed model. 

Somewhat similar curves are shown in figure 14 for balsa-like material 
and a payload weight of 450 lb (the cases from table 1 being 8, 10, 12, and 13 
without penetration, and 9 and 11 with penetration).  It should be noted that 
the 450-lb payload, in contrast to the lighter payload, permits the use of the 
efficient balsa-like material without causing excessive decelerations in the 
absence of penetration. When penetration is absent, results are presented for 
the lowest o0    considered, namely, 800 psi. According to preliminary calcula- 
tions, this a0    value gives minimum weight results for the balsa-like material 
(cored when a0    is less than 1200 psi) , as opposed to n,-,   = 2000 for the 

"max 
honeycomb-like material.     The stress of 800 psi determines    SEA    as  24,000 
ft-lb/lb  and    pcmge    as  3.84 lb/ft3.     Figures  14(a),   14(b),   14(c),   and 14(d) 
then show that  an increasing    Rp   (decreasing    Ppge)   causes    Wco,  R,   and 
nn to increase but causes    q_.      /qc    to decrease   (decreasing the  likeli- Fmax Pmax    s 

hood of penetration,   as  expected for increasing    Rp).    Note that the 
Qn      /Qc;    of 0.730  at    R- =  1.6  ft is  the only case where penetration is pmax    s P 
impossible because    qD      /qQ    is  less  than one.    A comparison of the simpli- Fmax s 

fied and detailed models indicates that the former has the lower Wco, the 
lower R, and the higher nn  . The q«  /q_ curves have a shallow cross- Fmax       Pmax b 

over (in the absence of payload penetration), and q   /qs does not exist 
for the detailed model at Rp = 1.6 ft. max 

This absence of qp  /qs for the detailed model when it exists for the 

simplified model has been a recurring theme without penetration, as seen in 
table 1, and indicates that the detailed model is the least susceptible to 
penetration.  The reason for this is the relatively low maximum g loadings, 
np  , for the detailed model in figure 14(c). 

Effect of Payload Penetration 

The data for payload penetration in figures 13 and 14 are limited by the 
fact that penetration often does not occur even when the payload is unbonded 
(see the qn  /q_  column in table 1 for case 2 with the detailed model and Fmax b 

for cases 4, 6, 7, and 13 with both models).  It is seen in figure 13 for 
honeycomb-like material, that penetration reduces W , increases SEA and a0, 
decreases R, increases PcmSe* and decreases q^  /q,, for the simplified 

^max s 

model at Rp = 0.6 ft. The impossibility of penetration for the plotted 
abscissas higher than Rp = 0.6 ft means that the Wco curve for the higher 
Rp values could have been combined with the penetration point at Rp = 0.6 ft 
to form a Wco curve for an unbonded payload, with an obviously beneficial 
effect. 

The Wco benefit due to penetration at Rp = 0.6 ft results from the 
increase in SEA and a0 and the corresponding decrease in R. These 



quantities  can change because the honeycomb-like material  is  allowed to change 
within its  class  to maintain    nr>        = 2000 for penetration  (which gives  the Fmax 
lowest    Wco,   according to preliminary calculations,   as  it did without 
penetration). 

In figures  14(a)   and 14(d)   for balsa-like material,   it is  apparent that 
payload penetration increases    Wnr.    and decreases    qn      /qc     for both models Lü rmax    s 

at    Rp =  1.0  ft and Rp =  1.2  ft when    SEA,  a0,  and Pcmge    are held constant at 
24,000  ft-lb/lb,   1,200 psi,   and 5.76  lb/ft3,   respectively  (where    a0 =  1,200 
psi  defines  the elbow of the    SEA    curve in fig.  5  and gives  the minimum    Wco 
according to preliminary calculations).    The overall  radius    R    is shown in 
figure 14(b)   to be increased by penetration at    Rp =  1.0  ft and decreased at 
Rp = 1.2  ft;  the apparent contradiction between the    R and Wco    effects of 
penetration is  resolved by recalling that the lowest    Wc0    without penetration 
was  for a lower    Pcmge> namely 3.84  lb/ft3,   than for penetration.     In figure 
14(c)   the effect of penetration on    np is seen to be the same for the two 

models  at    IL = 1.0  ft but different at    Rp =  1.2 ft. 

The    Wco    effect of penetration indicates  that  a perfect payload bonding 
would be desirable  for the  cored balsa-like material  at    Rp =  1.0  ft and 
Rp = 1.2  ft.     In the event that such a bonding is not feasible or trustworthy, 
however,   the  case of an unbonded payload must be considered.    Hence undefined, 
wavy-line transitions between penetration and no penetration are shown in 
figures  14(a),   14(b),   and 14(c), but not in figure  14(d)   (due to  lack of 
space).    The most important of these transitions is  for    Wco    in figure 14(a). 
If the    Wco    transition were specified in the area of the wavy line,   it would 
define a curve for an unbonded payload since the wavy line skips  over 
Rp = 1.4 ft, where bonding is  required to prevent penetration at 
a0 = 800 psi. 

Stresses between 800  and 1200 psi   (the minimum weight value for 
penetration)  will presumably be useful  in the transition.    Thus  a variety of 
specified transitions will be possible.     For an unbonded payload,   it would be 
desirable to seek a minimum    Wco    in the transition region for a single    a0 
at which penetration is  ready to begin at the end of the stroke; but this  is 
beyond the scope of the present report.    The reasonable assumption, however, 
is  that such a minimum    Wco    exists  and indicates  an important design trade- 
off for cored balsa,   a point where a further increase in payload packaging 
density  (the abscissa of fig.   14(a))   is undesirable. 

The most important effects of payload penetration discussed so far have 
been a decrease of    Wc0    for the honeycomb-like material  and an increase of 
Wco    for the balsa-like material.     Both  comparisons have been based on mate- 
rial variations  for minimum weight within the categories.     If these varia- 
tions  are not allowed,  penetration can always be expected to increase    Wco. 

Except  for the roughly 7-percent decrease in    Wco    for the honeycomb- 
like material  at    Rp = 0.6  ft,  there has been no advantage of penetration 
reported up to this point.     If, however,   a design is permitted to change 
from the honeycomb-like category to the balsa-like category,  then a major 
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penetration advantage occurs in the present examples for the 100-lb payload. 
Specifically, a comparison of case 1 (Rp = 0.6 ft with np   = 2000, 

honeycomb-like, no penetration) and case 3. (Rp =0.6 ft, a0 = 1200 psi, 
balsa-like, penetration) from table 1 shows a weight saving due to penetra- 
tion by a factor greater than 3 in Wco and greater than 2 in Wco + Wp0. 
In addition, a comparison of case 4 (Rp = 0.7 ft with np   = 2000, 

honeycomb-like, no penetration) and case 5 (Rp = 0.7 ft, a0  = 902.4 psi at 

n-n    limit of 2000, balsa-like, penetration) shows a weight saving due to Fmax 
penetration by a factor greater than 4 in Wco  and almost 3 in Wc0 + Wp0. 
Presumably, a still more impressive comparison would have occurred at 
Rp = 0.8 ft except that a penetration design could not be achieved for 
nr,   = 2000. ^max 

The honeycomb-like material  is used in the comparisons when penetration 
is  absent.     The reason is  that the balsa-like material, having the higher 
SEA    over the same stress range   (fig.   5),   is  considerably lighter than the 
honeycomb-like material.     In fact, with the force determined by the stress 
range,   the balsa-like material provides  so little mass  that the    g    loading 
exceeds  the limit of 2000  for the 100-lb payload;   and the heavier honeycomb- 
like material  is  required in the absence of payload penetration.     (Note that 
this  is not true for the 450-lb payload.) 

When penetration is permitted, however,   for the balsa design by removal 
of the hypothetical perfect bonding between the top of the payload and the 
crushable material,   then the only stresses  acting on the payload are the 
crushing stresses  at the bottom of the payload.    This reduces  the force suf- 
ficiently that the payload maximum    g    loading can be held to 2000 even for 
the balsa-like material with the 100-lb payload.     The high    SEA    of the balsa- 
like material  then produces the large weight saving due to penetration. 

Note that this weight saving applies  for the selected classes of 
material;   it would obviously be decreased if the honeycomb-like material were 
replaced by an intermediate  class  just heavy enough to bring    np down to 

2000 without penetration.     The possible availability of such a class  is 
indicated by the less efficient balsa reported in references 4 and 5.    These 
balsas may be made still  less efficient,  in the sense of being heavier, by 
glue joints or by the addition of weights   (a required weight being the cover 
for the crushable material). 

Thus  the  large weight saving due to penetration is  clearly restricted 
to the presently selected materials.     It is  obviously, however,   a phenomenon 
worth considering.     The fact that a heavy honeycomb material is still being 
considered in recent design studies  is  indicated in references  5,   8,   and 9; 
and the    g    loading issue raised herein is  emphasized in reference 5. 

Comparison With Previous Analytical Models 

The foregoing results  apply to the specific analytical models 
considered here;   and a question arises  as  to their validity.    They can be 
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considered valid in one sense if they constitute a logical analytical 
extension of a reasonably standard body of theory having at least a limited 
experimental verification. The extended analytical models can then be compared 
with future experiments to establish experience factors as well as means of 

improving the models. 

The logical extension of standard theory is considered first, with the 
limited experimental verification to follow. As pointed out in the Introduc- 
tion, the present analytical models extend a significant amount of prior work 
(e.g., refs. 1 through 9) to include the effect of payload penetration. The 
summary of assumptions and limitations given under "Outline of Theory" is the 
same as the assumptions in references 1 through 9, where stated, except for a 
few variations on the assumption of equation (2).3 

With the fundamental assumptions the same, it is no surprise that the 
basic equation of motion (with the anisotropy relation removed) is the same 
for the present simplified model without penetration as for comparable models 
(mass assumed constant, infinitely thin disk of crushed material, gravity 
neglected) in references 1 through 9, where stated.  For the present detailed 
model, the most nearly comparable and completely described prior model is 
given in reference 2. The two models are identical except that the model of 
reference 2 has a uniform and isotropic crushing stress instead of the par- 
ticular radial distribution of equation (2).  In appendix E, it is shown that 
such a crushing stress converts the fundamental equation (A19) into equation 
(E7), which agrees exactly with the fundamental equation (1-4) in appendix A 
of reference 2. 

The analytical extension to include payload penetration is logical for 
the detailed model in the sense that no fundamental assumptions are added to 
the list given under "Outline of Theory." For the simplified model, the 
assumption is added that the force resisting penetration is constant, but it 
has already been pointed out that this is true for the detailed model to one 
part in a thousand or less, for the examples considered herein. 

Comparison With Previous Experiment 

The applicable experimental information known to the author is limited 
to two configurations, one tested at an impact velocity of 374 ft/sec (ref. 
10) and the other at roughly 220 ft/sec (footnote 1). The latter velocity 
actually represents an average of velocities ranging from 215 to 225 ft/sec 
for four nearly identical tests. At the higher impact velocity, only a 
single test is considered because the exterior cover for the model in that 
test was the only one (out of four) sufficiently strong and resilient to 
prevent model disintegration.  

3These variations in anisotropy can be important for various crushable 
materials, as pointed out in reference 5.  It may be desirable to consider the 
standard theory as incorporating the variations of reference 5, with the 
assumption of equation (2) considered as an example for evaluating the effect 
of penetration.  If, however, it is desired to have only one anisotropy rela- 
tion for a standard theory, then the assumption of equation (2) is desirable 
since it is simple and widely used. 
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The tests just described demonstrated the existence of payload 
penetration, depending on the efficiency of the payload bonding. They also 
indicated that both the detailed and simplified models provide reasonable 
(within 10 to 30 percent) estimates of measured impact deceleration and 
stroke. There are not enough data to determine which model is quantitatively 
better. 

Alternate Models 

The analytical models considered here are manifestly only two out of 
many possibilities. Even with attention restricted to the present computer 
programs, it would be possible to investigate separately the effects of the 
limitations calling for pc^ = 0 and e\ =  1, rather than both together (the 
assumptions of g = 0 and Fp0(e) = 1 being trival).  It would also be possi- 
ble to set pck = 0 in the present programs for integration of the equation of 
motion but not for evaluation of the acceleration. The programs could be mod- 
ified to incorporate various levels of bonding (rather than just zero or per- 
fect bonding), various levels of shear resistance, and rational methods of 
incorporating the weight and strength of the glue joints and exterior cover. 
(Note that any SEA changes due to glue joints or freezing of the crushable 
material could be incorporated by changing fig. 5 and the corresponding 
equations defining the material.) 

Two alternate models have been briefly investigated; a full investigation 
would require changes in the machine programs or the design charts.  In one, 
called the "hemisphere" model, the payload and the entire upper hemisphere are 
able to penetrate as a unit, regardless of bonding, because of low resistance 
to cross-grain crushing in the equatorial plane.  In the other, called the 
"shear-plug" model, the payload and the cylinder (with rounded ends) directly 
above it are able to penetrate as a unit, again regardless of bonding, because 
of low shear resistance over the cylinder walls. 

The investigation of the hemisphere model indicates that the payload and 
upper hemisphere would have started to penetrate below the maximum g load- 
ings for almost all cases in table 1, and would have done so more readily than 
the isolated payload for the detailed and simplified models, provided that the 
cross-grain crushing strength is 8 percent of the end grain value. Hemisphere 
penetration is calculated even at 18 percent (ref. 3 for balsa) for several 
cases. At 8 and 14 percent, however, it is also calculated for the high-speed 
(374 ft/sec) experimental configuration at a g loading of 3000 to 4000 (ref. 
10); yet there was no evidence of hemisphere penetration (i.e., of exterior 
cover wrinkling at the equator). Thus, 18 percent may be the most nearly cor- 
rect figure, particularly when the glue joints are considered.  In any event, 
the hemisphere model is of interest. 

For the shear-plug model, on the other hand, there is no possibility of 
shear-plug penetration at the g loadings under consideration according to 
calculations based on a measured shear strength. This model would be of 
interest only for much higher g loadings (say, greater than 3000) and/or 
much lower shear strengths (less than 145 psi). 
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Finally, a question remains as to the effect of payload radius Rp when 
densities (including payload packaging density) and stresses remain the same, 
that is, a question as to the effect of scaling. Except for the trivial grav- 
ity force, the equations of motion indicate (for a nondimensionalization dif- 
ferent from that of appendix A) that geometric scaling should apply, with U0 
and SEA unaffected, with np   *• l/Rp, R ~ Rp, and Wco ~ RD

3. These scaling 

conditions, then, can be used to extend the present results. They can also be 
used to check numerical results whenever two cases scale each other.  In the 
present examples, only cases 3 and 9 should roughly scale each other, as 
indeed they do. 

CONCLUDING REMARKS 

The governing equations for the landing impact of a rigid payload 
protected by a crushable casing, including the possibility of penetration by 
the payload into the casing, have been developed for a general vertically 
symmetrical landing. The general equations have been specialized for zero 
shear resistance, a constant compacting strain, and uniform density of the 
crushable casing. They have also been specialized for a spherical payload and 
casing, with the latter having its highest crushing stress in the radial direc- 
tion.  For the spherical configuration, two approximate analytical models have 
been defined:  (1) a detailed model with no additional assumptions but requir- 
ing an automatic computer program; and (2) a simplified model utilizing either 
the computer program or design charts but requiring the assumptions of infi- 
nitely thin sheets of crushed material, constant mass in the equations of 
motion, zero acceleration due to gravity, and a constant resistance to 
payload penetration. When specialized to prevent penetration, the simplified 
model (or slight variations thereof) has been widely employed in previous 
work; and the specialization of the detailed model for a uniform and isotropic 
crushing stress without penetration has been shown to have the same basic equa- 
tion as an earlier model.  Results for the two models are in reasonable agree- 
ment with two previous measurements, having impact velocities of 220 and 
374 ft/sec. 

Thirteen examples have been presented for each of the two analytical 
models. The examples are for an impact velocity of 300 ft/sec, a maximum 
permissible g loading of 2000, payload weights of 100 and 450 lb, payload 
radii ranging from 0.6 to 1.6 ft, payload packaging densities ranging from 
26.23 to 110.5 lb/ft3, a choice of zero or "perfect" bonding between the pay- 
load and the crushable material, and a choice of a selected balsa-like or 
honeycomb-like class of crushable material. Overall radii resulting from the 
designs range from 1.81 ft to about 3.45 ft, and the resulting crushable 
material weights vary from a little over 124 lb to almost 763 lb. The fol- 
lowing conclusions are drawn from the examples: 

1. The simplified model has the lower crushable material weight of the 
two models, the greatest difference being approximately 15 percent 
for an example without payload penetration. 
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2. The greatest difference between the two models is a 29 percent 
discrepancy in the maximum crushing stress determined by a design 
example without penetration for the honeycomb-like class of material. 

3. In the absence of payload penetration, the crushable material weight 
and the overall radius increase with increasing payload radius, that 
is, with decreasing payload packaging density. 

4. For the honeycomb-like class of material and the 100-lb payload (with 
the maximum g loading held at 2000 to minimize weight) payload 
penetration does not exist for the detailed model.  For the simpli- 
fied model, however, penetration slightly reduces both the crushable 
material weight and the overall radius at the lowest payload radius, 
0.6 ft, the only radius among those tried for which penetration 
exists with honeycomb. This advantage of penetration means that 
bonding should be avoided with the present honeycomb-like material, 
for which the specific energy absorption increases with crushing 
stress (a variation more common even for balsa than that for the 
present balsa-like class). 

5. For the balsa-like class of material (with a payload weight of 
450 lb), penetration drastically increases the crushable material 
weight at the lowest payload radius (1.0 ft) and slightly increases 
it at the next lowest radius (1.2 ft). This combines with nonpenetra- 
tion results to give a minimum-weight radius for an unbonded payload 
between 1.2 and 1.6 ft and a corresponding minimum-weight payload 
packaging density between 26.33 and 62.15 lb/ft3. 

6. An impressive benefit of payload penetration is a decrease in 
crushable material weight by a factor greater than 4, which occurs 
for the 100-lb payload with a radius of 0.7 ft when the (selected) 
honeycomb-like class of material is required without penetration (by 
the g loading ceiling of 2000), but when the more efficient balsa- 
like class is feasible with penetration. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, Calif., 94035, Jan. 12, 1970 
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APPENDIX A 

DEVELOPMENT OF BASIC EQUATIONS 

GENERAL GOVERNING EQUATIONS 

Figure 2 shows a fairly general landing geometry at the start of impact 
and at two later instants of time during impact. The only shape requirement 
is symmetry about two mutually perpendicular vertical planes, and this 
requirement is made for compatibility with the assumption of pure vertical 
translation. The crushing strength and density of the crushable material are 
also required to be symmetrical but otherwise generally variable. The land- 
ing surface is assumed to be perfectly flat and rigid. The payload is 
assumed to be perfectly rigid and is considered unbonded to the crushable 
material in determining the start of relative motion (if any), herein 
referred to as "payload penetration." 

The analysis begins with the phase of impact shown in figure 2(b).  In 
this phase, the crushable material has begun to crush against the landing 
surface, but payload penetration has not begun. Hence, 

(Al) 

where    qp and q    are the absolute displacements of the payload and the 
uncrushed crushable material,  respectively,   as shown in figure 2(b).    The 
equation of motion for the constant payload mass    nip0    is written as: 

mq=mg-#     la        dA 
poH        pos     J   J     vpo (A2) 

Apo 

where    q    is the second time derivative of    q,   g    the local  acceleration due 
to gravity,  üyp0    the vertical  component of normal stress on    mp0,   and Ap0 

the area over which the stress  acts.1 

The equation of motion is now written for the variable mass    mco - mcj 
of uncrushed crushable material in figure 2(b)   under the assumption that each 
particle in    mco - mci    is moving at the same vertical velocity    q    at a 
given instant.     The equation is 

1Note that the vertical  component of shear stress on the payload could 
have been added to    tfvpo    in equation   (A2)   and in the later equations  con- 
taining    Cypo-    There are, however, no    crypo    terms  in the major governing 
equations except  for the equation that determines the existence of payload 
penetration.    When penetration is  about  to start,  the most important stresses 
are    cryp0    values that are almost large enough to crush the material   (in its 
strongest direction if it has one and has been deployed to utilize the fact). 
Shear stresses  are negligible by comparison and are often incorporated in the 
tests  to determine the crushing strength. 
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(m  - mr,)q = (m  - m )g + /  fa dA - /   / a    dA     (A3) co   t-i-'^  v co   cr" J     J     vpo    J      J      v 
A Arl po cl 

where ay is the vertical component of the "mostly static" and "mostly 
normal" stress capable of deforming the crushable material plastically over 
the area Acl. The term "mostly static" implies the assumptions that the 
damping force is incorporated and that the coupling between vertical and 
horizontal velocity, or dynamic buckling effect., is also incorporated. The 
term "mostly normal" implies the incorporation of a small shear stress.  (See 
the discussion of figs. 1(b) and 1(c) under "Properties of Typical Crushable 
Material.") The area Acl is the intersection between mco - mcl  and the 
mass of crushed material mcl in figure 2(b). The crushed material is 
assumed to have been compacted sufficiently to deliver the required crushing 
stress ov; and successive layers of material are transferred from mco - mcl 
to mcl  at the boundary Acl  as they undergo plastic deformation.  (Such a 
process is observed experimentally in the crushing of plastic foam, balsa 
parallel to its grain, and honeycomb parallel to its axis.) 

The assumption of a uniform (though time variable) vertical velocity q 
throughout mco - mci has two implications besides the crushing by layers 
just described.  First, the elastic stress waves that establish a uniform q 
must obviously travel at speeds far greater than q (i.e., q must be a low 
subsonic value).  Second, the deformation waves associated with the elastic 
stress waves must be small enough not to affect the magnitude of q. 

Equations of motion could also be written for mcl  in figure 2 and for 
the elemental layer of mass being transferred to mcl. These equations 
would determine dynamic stresses in the sense of variable mass, however, and 
are not needed since av is assumed to be a measured quantity. 

Equations (A2) and (A3) can be used to determine whether payload 
penetration "occurs and, if so, at what displacement.  If both equations are 
solved for q - g and the results equated and rearranged, the result is: 

/  / a   dA = —  / / a dA (A4) J    J    vpo    m  + mco - m J   J    v 
Apo Acl 

where mp0 + mco - mcl is the total time-dependent mass at velocity q in 
the absence of payload penetration. Equation (A4) is the only major governing 
equation containing ayp0; the neglect or incorporation of shear stresses is 
justified in footnote 1 of this appendix. 

If equation (A4) is considered formally solved for o~Vp0, payload 
penetration cannot begin until those stresses become large enough to cause 
plastic failure, that is, become a av distribution. This will occur only 
if the geometry, masses, and impact conditions are such that the displacement 
q becomes large enough to bring Aci up to the necessary size.  It can be 
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seen in equation (A4) that the following quantities tend to prevent or post- 
pone payload penetration:  a large payload bearing area Ap0, a small payload 
mass mpo, a large total mass mpo + mco -■ mcl, and a small bearing area of 
compacted material Acl. 

Equations (A2) and (A3) can be added to give the major governing 
equation: 

(m  + m  - m Jq = (m  + m  - m )g - / fa    dA      (A5) 
^ po   co   cl/n    po   co   cl ö J   J    v 

Acl 

This is the simplest equation of motion to apply during the impact period 
prior to payload penetration.  It does not contain Oyp0 (see footnote 1 of 
this appendix). 

If equation (A4) shows that payload penetration has begun, the geometry 
of figure 2(c) applies. The constant payload mass mp0 is then positioned 
by the coordinate qp so that equation (A2) becomes: 

m q = m g - /  /a   dA rA£-i ponp   po6 J     J   vpo (Ae>-> 
Apo 

The mass ^i    in figure 2(c) consists of compacted crushable material. 
The velocity qp of mpo is assumed to apply uniformly throughout mpl. 

Hence, the equation of motion for mpl  can be written: 

mq=mg+//a dA-//a1dA 
Pi T        Pi        J   J     vpo J J   v (A7) 

A A  . po pi 

where Apl is the intersection between mpi  and the variable mass 
mco " mcl " mpl °f uncrushed crushable material, and av

l    differs from the 
"mostly static" crushing vertical component av acting over Apl only 
because the elemental layer of mass dmp^ is transferred to mpi. 

The equation of motion for dmpl becomes, with the definitions just 
given: 

/ A1 dA ■/ /c dm I-^-rz— I =   /      I a  '  dA -  I       / a    dA ply    dt     J    J     J    v /       /v 

Apl Apl 

or 

(qp - q)mpi  = /      / ay
1  dA -  /      / a    dA (A8) 
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where    liipj  = dmpi/dt, where the higher-order quantity    gdmp^    has been 
neglected,   and where    cu and q    represent the final  and initial velocities 
of    drripi. 

Equations   (A6),   (A7),   and  (A8)   can be added to give 

(mpo + VS +   CS " ^l  =  (mp° + V8    f f°v dA CA9) 

Api 

A second major equation of motion defines  the forces on the variable mass 
mco ~ raci  - mpi    °f uncrushed crushable material  in figure 2(c).    Under the 
assumption that each particle in    mco - mci  - nv^    is moving at the same 
vertical velocity    q,  this equation is 

(mco " md - V4 =  (mco - mcl  - mpi)g +/ f\ dA "/ fav dA 

Api ACl 
(A10) 

where Api is defined as in equations (A7) and (A8) and Acl is defined 
analogously to that in equation (A3). 

Equations (A9) and (A10) define the motion during payload penetration 
since all quantities can be defined in terms of q and qp and their deriva- 
tives. The two major governing equations are coupled in the most general 
case by the qp - q term, the dependence of mpi on qp - q, and the 
dependence of mpl and of av over Ap^ on qp - q. Equations (A9) and 
(A10) do not contain crVp0. 

GOVERNING EQUATIONS FOR ZERO SHEAR DEFORMATION, 
UNIFORM COMPACTING STRAIN, AND UNIFORM 

MATERIAL DENSITY 

Although figure 2 does not show any shear deformation, the equations 
derived so far would apply even if such deformation were present. The speci- 
fication of av, however, requires knowledge of the location of the surfaces 
Acl and Apl9 and shear deformation is ruled out at this point to retain the 
simple surfaces implied by figure 2. Then Aci and Api are determined by the 
height variables hci and hp!, where hcl  is the local height of mcl in 

figures 2(b) and 2(c) and where hp: is the local height of mpl  in fig- 
ure 2(c).  If shear deformation had been considered, there would be a trail- 
ing of material to make nv^ wider than mp0 and a possible lifting off 
the ground of the edges of mci. 



The actual lengths of hpl and hcl  are evaluated in terms of a readily 
measurable variable e. This variable is defined as the compressive compact- 
ing strain of the crushable material ("compacting strain" is the strain at 
which the crushing stress rises abruptly from a relatively constant value for 
a test specimen of uniform cross section). The effect of the direction of 
maximum strength is ignored under the assumption that the material will com- 
press to the same compacted strain along any axis. 

The use of e is made feasible by the assumption that the energy 
absorbing process consists of the vertical crushing of separate vertical rods 
of material.  Then hc in figures 2(b) and 2(c) is the total shortening 
deformation of a rod having an initial length of hc + hCi, and qp - q is 
the corresponding deformation of a rod having an initial length of 

where h qp - q + hpl, wnere npl 
Since the variable e d£ 
ing deformation of each successive rod element 
that 

is the local height of mpj in figure 2(c). 
is (by the definition of strain) the total shorten- 

dü    to be crushed, it is seen 

■/ 
0 

■/ 

qP-q+hpi 

da 

V cl 
da 

(All) 

Under the assumption of uniform compacting strain (e = e^ = constant), 
the equations just derived can easily be solved for hpi and hcj 

1 " ek        ^ 
hr,! = —:  (q„ - q) 
P1 "  ek       -P 

1 - e, 

cl    £k   C 

(A12) 

J 

The effects of equations (A12) for the constant ej. can be seen in figure 3, 
which is otherwise identical to figure 2.  In figures 3(b) and 3(c), the mass 
mci has become a foreshortened image of the volume Vc, which would lie 
beneath the landing surface if there had been no crushing; and the height 
hpi    of the mass mDi    has become constant in figure 3(c). 

The next limitation to be imposed in the analysis  is  that of uniform 
density of the  crushable material prior to crushing.     Then    mpi   and mcl     in 
equations   (A4),   (A5),   (A9),   and  (A10) become: 
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pi        Kck^  pi r>J 

m :l  = pck(Vcl  + V J 

where    Vpi     is  the volume of   mpi,  Vp    the volume swept out by    mp0    during 
payload penetration,   and    VCi     the volume of    mcx.    When    Vpl     is  related to 
Vp    and    Vci  to Vc    according to equations   (A12),   the masses    mpi   and mci 
become 

~\ 

■m      = p  . IV  + VT pi ck\ p      e I 

m .   = p ,   V  + V cl ck\ c       e, c 

ck P 

pckVc 

J 

(A13) 

The relations between the volumes    Vp and Vc    and the displacements    q 
and qp    can be determined by the following volume formulas: 

V    = A    . (q     -  q) 
p        poh vnp      ny 

V 
/\h dh 

(A14) 

J 

where A-^ is the horizontal planar projection of Ap0 and Apj, and Ash is 
a horizontal cross section in Vn. 

Another useful set of relations involves the stresses. The stress 
integrals in the major governing equations (A4), (AS), (A9), and (A10) can be 
written 

J     J  °VP°    J     J   V dA 
po poh 

I AdA -f A "* 
Cl ^cih 

~\ 

> (A15) 
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where Op0 is the normal stress on the payload prior to penetration, a    is 
the normal crushing stress on any surface, and Acih is the horizontal 
planar projection of ACi.  For integration of the right-hand sides of equa- 
tions (A15), the normal stresses must be evaluated at the intersections 
between the curved surfaces (Apo, Acl, Apl) and vertical lines through the 
centroids of the elements dA in the horizontal planar surfaces (Apoh, Aclh, 
Apoh)• 

A final useful relation is the following change of variable: 

" = q ^ (Ai6) 

With equation  (A16) 

q  -  dt  -   dt       U  dq       2       dq tA17J 

Equations (A13) for uniform density and uniform compacting strain, 
together with the volume equations (A14) and the stress equations (A15), are 
now introduced into the basic governing equations.  In addition, one of the 
governing equations is reduced to first order by equation (A17) . Thus equa- 
tion (A4), which determines the start of payload penetration (if any), 
becomes: 

J I m  /  / a  dA 

j      j    V,dA =  —         (MS) po 
''A  "* 
poh m  + m  - (p . /e. ) /  A , dh 

po   co  ^ck' kJ  1        sh  c 
/ 
0 

Equation (A5), which defines the impact prior to penetration, becomes: 

f. I o  dA 
1 d(U2)      ^clh' ,  , 
2 -dq"^ = S :  (A19) 

■/ m  + m  - (p . /e. ) /  A , dh 
po   co  v ck k /   sh  c 

0 

Finally, equations (A9) and (A10) for payload penetration become 
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qp = g - 

q = g 

K*V/ek)Cqp-q)2+/ fodA 

 22h  
m      +   (p  , A    ,/e. ) (q    -  q) 

po       v ck poh    k'vnp      ^ 

J       fa dA -j     Jo dA 
Acih Vh 

>> 

> 
(A20) 

</ 
mco "  (pck/ek) /    Ash dhc "  ^ckV^k3 CqP " q) 

J 
Equations   (A18)   through   (A20)   define the problem for the landing geometry of 
figure 3,  providing the stress  and volume integrals  can be evaluated. 

EVALUATION OF VOLUME AND STRESS  INTEGRALS 
FOR SPHERICAL  GEOMETRY 

The evaluation of the volume and stress  integrals  is  facilitated by- 
restriction of the  landing configuration to a simple shape.    The sphere is 
particularly useful  for landing packages  and crushable  coverings  that must 
absorb energy from impacts in any direction.    Hence,   the geometry is now 
specialized to concentric spheres. 

The spherical  landing package is  shown in figure 4(a)   at the start of 
impact,   in figure 4(b)   during impact but prior to payload penetration,   and in 
figure 4(c)   after penetration.    All  angles  and radial  lengths  are shown in a 
plane of maximum value. 

The volume integral  in equations   (A18)   through   (A20)   can be evaluated 
immediately on the basis of sketch   (a), which is  a simplification of figure 

Sketch   (a) 
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4(a)   or 4(b).    Thus 

A , dh    =   / irr2 dh = TT / sh c     J                  c       / 
"0 0                               ^0 

Vc "/    Ash dhc =/    17r2 dhc=Tr/ [R2 "   CR - q + V2]dhc 

or 

vAhdhc = ^2^-^ (A21) 

It is also noted, for certain volume terms and integration areas in equa- 
tions (A18) and (A20), that 

Apoh = ^Rp2 (A22) 

as  can be seen from figure 4 and the definition of    Ap0h- 

One of the stress  integrals  can be evaluated immediately under the 
temporary assumption that    a-po = tfpok = constant.     Then, with equation 
(A22), 

//   a n dA = a    .A    ,   = TTR 
2a    , (A23) J      po pok poh p    pok ^      J 

poh 

The assumption that Op0 = crp0k may be valid only when Op0k approaches 
the normal crushing stress a, that is, when payload penetration is 
approached.  Fortunately, this is the only region of interest for 
equations (A18) and (A23). 

Prior to evaluation of the stress integrals for a, another limitation 
is applied to the analysis, namely, 

a = a0  cos a ;  a <  90° (A24) 

where a is the angle between the local normal to the stressed area and a 
radial line from the center of the spherical system (as if undeformed) through 
the point of stress application.  (The rationale for this limitation is given 
immediately prior to eq. (2).) 

The next step is to determine a for mci in figure 4(b) (with 
applicability after payload penetration as well). Any point on the surface 
of revolution shown by the dotted portion of the circle is defined, with the 
aid of sketch (a), by 

r2 + (R - q + hc)
2 = R2 

From the second of equations (A12) 
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r2  +    R -  q ^- hciY = R2 
1  -  e 

(A25) 

Hence,   in the vertical  great-circle plane,   the surface slope of    mci    is 

dh 
cl (1  -  Or (1  - ,k)r 

dr ^R-q+^A1-^]1^) e, /R
2
  - r2 

k 
Thus, with    <j>    shown in figure 4(b)   and from the greater detail in sketch   (b), 

Landing surface 

Sketch   (b) 

dh (1  -  e )r 
a = <j) -  arc tan    A_    = $ + arc tan 

dr .^R2" 
(A26) 

ekVK-  - r< 

With equation (A26) introduced into equation (A24), the normal stress on 
the surface Acl (at height hcl in fig. 4(b)) becomes: 

a = a    cos 
o 

[     ♦  (1 " £k)r <\> +  arc tan 

Thus, 

/R^T 

c                   (1 " Ek)r (1 " ek)r 

— = cos cf> cos arc tan        - sin <J> sin arc tan 
ao e, /R2

  - r2 

but,   in figure 4(b)   and sketch   (b), 

e. /R
2
  -  r2 

k 

R 
cos <j> = 

q - h M        cl 

/r2  +   (R - q  - hci)
2 

sin <j> = 
/r2 +   (R - q - hci) 
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and    hci     can be determined from equation   (A25).     Then,   after some 
manipulation,  together with 

/R2-(R-q)2 

a dA =   I a2iTr dr 

clh ° 
we obtain 

// 

/R2-(R-q)2 

a dA = a 
2ir[(R - q)/R2  - r2  -   (1  -  ek)R2]r dr 

([(1  -  Ek)2r2  +  Ek
2(R2  -  r2)](r2  +   (l/^

2) [R  - q  -   (1  -  ^^^T2]2)) ' 

With the substitution b = /R2- -  r2, this becomes 

/2 

// 

[(R -  q)b  -   (1  -  Ek)R2]b db 

a dA =  2ira 

clh R-q (|[sk
2  -   (1  -  ek)2]b2 +   (1  -  Ek)

2R2)JR2  - b2 +   (l/£k
2)[R  - q  -   (1  -  Ek)b]2|y 

(A27) 

/2 

and equation (A27) is the stress integral for the upper surface Acj of 
mCI in figure 4(b) or 4(c). The integral contains no singularities and 
hence can readily be evaluated numerically. 

The angle a is now determined for mpj  in figure 4(c). Thus, with 
sketch (c) for detail, 

a = e p    TP 

or 

ex = arc sin 

v Rp    rp arc tan 
47 P   - r

P   
+ (qp - q) + h

Pi 

Sketch   (c) 
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or, with the first of equations   (A12), 

a = arc sin   arc tan 
RP (l/ek) (q    -  q)   +  A/  - r 

(A28) 

When equation   (A28)   is  introduced into equation   (A24),   the normal 

crushing stress    a    is  determined.    When    a    is put into J        J   a dA    with 
Rp APoh 

2,[(qp-q)/£k)/Rp
2-rp2 + Rp2]rpdri 

the result is 

,RP 

/  fa dA = ao 

A poh 0 P 
RT1/2[(qTi  -  q)/ev]/RTA

2  - lj +   [ (qp  -  q)/ek]2  + Rp
2 

'kJV    p P 

With the substitution    b^ = /RP
2
  - rp

2,   this be p   -   rnp     -   ip comes 

A    t, poh 

2-no 
a dA 

([(q    - q)/ejb    + R 2)b    db 
1      T      H      k    P P  J   P      I 

P     J        /2[(q    -  q)/ek]b     +   [ (a     -  q)/^]2  + 
(A29) 

Equation   (A29)   is  the stress  integral  for the lower surface    Apl    of    mpl     in 
figure 4(c).     It  can be integrated directly to give 

// 

2na 
a dA = 

V 15RP 

:<V)"*(: ,p ~q' V * V (V) 
P        \     e. 

qp - q 

3 - SRp" 
/ qp " q\ 

(A30) 

Since equation  (A30)   is  indeterminant at     [(qp - q)/e]   = 0,  that is,   at 

the start of payload penetration,   the best way to evaluate JA     J a dA    is  to 

integrate equation   (A29)  numerically.    At     [(qp - q)/e]   = 0,  equation  (A29) 
becomes 
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a  dA 
P ° 

(A31) 

[(qp-q)/£]=o 

Comparison of equation (A31) with equations (A23) and (A24) serves as a 
partial check on the development of equations (A29) through (A31) since 
a = 0° (or a = ao) on ^e payload at the start of penetration. 

Dimensionless Governing Equations for Spherical Geometry, 
With Termination Conditions 

Governing equations that have been derived in this appendix are now 
made dimensionless in a form convenient for numerical solution of the impact 
problem with spherical geometry.  Prior to payload penetration, equation 
(A19) applies and becomes, with equations (A21) and (A27), 

md 

1 d(w2) 
2 dz 

g 
nmdge 

FclO) 

m(z) (A3 2) 

where ge is the acceleration due to gravity on earth, npge and nm(jge are 
the actual and maximum design payload decelerations, respectively, and 

n g p6e 

w = 

2 dq 

U 

^mdgeR 

z = = £ 

iTR2a 

R  '"po^idSe 

^ 

> 

J 

The dimensionless total mass m(z) in figure 4(b) is defined by 

mpo + mco " mcl     mco   ! h. 
m(z) m. = 1 + 

1 ck i o 
-7 *- 

po m. 'po  4ek \PpRy 

zz(3 - z) 

(A33) 

(A34) 

with m. po 

pR ~ (4/3)TTR
3 

(A35) 
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where    Fcl(z)   is  the dimensionless  crushing force on    m(z)   defined by 

Fci(z)   = 
TrR^a     J      J 

a dA = 

A clh 

[(1 -  z)s  -  1 + Eijs ds 

l-z U[ek
2-Cl -  ek)2]s2+(l  -  ek)2}{l -  s2 +(l/ek2)[l-z-(l -  Ek)s]2)j 

(A36) 

with    s  = b/R.    Under the initial  condition    w(z = 0)   = w0,   equation   (A32) 
integrates  immediately to 

w2 = w 2 + 2 
o 

fZ\ d(w2) 
J      2    dj dj 

= w0
2  +  2 

J      Kdge 
Fci(j) 

dj 

2   ,.     2gz 

nmdSe 
Wri      + 2KR 

/ 

z  FGl(j) 
dj 

(A37) 

Equations (A32) and (A36) apply until z reaches a value zs, at which 
payload penetration (if any) starts. The start of penetration is defined by 
equation  (A18)  with equations   (A23),   (A34),   and  (A36).    Thus, 

■^pok      /R \    Fci^z-' 
,RV        m(z) (A3 8) 

and penetration starts (z = zs) if and when ap0k reaches a0 (providing the 
payload is not attached to the crushable material). 

At the start of penetration, it becomes convenient to introduce three 
new variables and one constant as follows: 
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**> 

Rp        Rp 

x = t 
fn    jg mdse 

Rp 

qp - q 

~^P~ 

KP = m^n   ,*„  =  MR~ 

> 

mp0"mdge 

The initial  conditions  for penetration are 

y(x = 0)   = ys =  zs r- 

fdy\        = /dy\    =        /I~ 

J 

~\ 

e(x = 0)   = e«.  = 0 

dx 
x=0 •m.- J 

(A39) 

(A40) 

where ws  is the value of w determined by equation (A37) at z = zs. 

During penetration, equations (A20) apply, with equations (A21), (A22), 
(A29), (A36), and (A39).  Thus 

nP      d2e  d2y _  g    (TrRp
3Pckek/mpo)C

de/dx)2 + KpFPO(e) ^ 
nmd J 2  ,2  n ,g dx   dx    md&e mpenCe) 

>    (A41) 

£y- -&—      KRFci(y) - KpFPo(e) 

dx2  nmd§e       mcr(y,e) 
~s 
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where Fcl(y) is determined by equation (A36) with (Rp/R)y^ substituted for 

z; 
by 
z;  mpen(e)   is  the dimensionless  total penetrating mass in figure 4(c)   defined 

mpen(e) 

mpo + mpl 
m- 1 + 7 

3/Pc^ 

po 4\P, 
(A42) 

with 

m 'po 
HP  ~ 3 F       (4/3)uRp' 

mCr(y>e)   is  the dimensionless  crushable mass  in figure 4(c)   defined by 

(A4 3) 

m    (y,e) 
er J ' 

mco " mci  " V      m 
CO 1 CkV3§--y    -7 

3/pc^ 
R. 4\Pi 

(A44) 
Npo mpo      4tk Vp /     \    "p /      M

 \
M
P 

and    Fp0(e)   is  the dimensionless  crushing force on    mpen(yp5y)   defined by 

• 1 

Ve)    E      R   2 
(esp +  l)sp dSj 

/2esp + e2 +  1 

(A45) 

with    Sp = bp/Rp. 

Equations   (A32),   (A37),   (A40),   and  (A41)   are the required governing 
equations  and initial  conditions.    With rebound excluded and with no payload 
penetration,   the impact is  terminated  (z =  zmax)  when w = 0.    Thus 

w(zmax)   = 0 (A46) 

With rebound excluded but payload penetration present, the impact is termi- 

nated (y = ymax and y + e^e = (y + eke)max) when dy/dx = 0 and 

dy/dx + ek(de/dx) = 0. Since e increases monotonically with time for the 
present examples, the termination condition becomes 

"^ 

'dy1 

idx, fy=y max 

rde 
idx le=e max 

(A4 7) 

J 

As the payload begins to penetrate the crushable material, equations 

(A41) are integrated simultaneously. This continues until the first of 
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equations (A47) is satisfied, thereby providing initial conditions for the next 
phase of the problem.  In this next phase, the second of equations (A41) can 
be ignored and the first equation solved alone. The uncoupled solution of 
the first of equations (A41) continues until the second of equations (A47) is 
satisfied. 

Simplifications for Constant Mass, Infinitely Thin Crushed Material, 
and/or Constant Penetration Resistance 

The governing equations are now written with constant mass (pck = 0). 
Equations (A32) and (A34) are combined to give 

nmd 

1 d(w2)   = 

2 dz Ki 

Fcl(z) 
R 

nmd§e 1 +   (mco/mp0D 

where    Fcl(z)   is  given by equation   (A36).     Equation  (A37)  becomes 

.z „z 

w" w0
2 + 2 /l^=»o2-/[ g Cl Ü) 

nmdSe 
K 

(A4 8) 

R 1 +   (mC0/m^J P°' J 
dj 

2 +   2ez 2KR 
=  W0

2  + -=^- -  T p 7 7-   /      Frl (j)dj °        n   ,g        1 +  (m    /m    )   I        cl ^J J  J 

md6e *• co    po' J f (A49) 

and equation   (A38)   gives 

Jpok _ /R_ 

a«    ~ I Rr 

FciCzD 

1 +   (in    /m    T co    poJ 
(A50) 

After payload penetration starts,  equations   (A41)   apply,   and    pck = 0 gives 

=    £ 

md 

d2y_ 

d!£ + d!z = _g j, F    (e) 
kdx2      dx2      "mdSe      W6) 

KRFcl(y)   -  KpFpo(e) 

dx2      We m~_/m co'   po 

(A51) 

J 

where    Fcl(y)   is  given by equation   (A36)  with    y(Rp/R)  substituted for    z    and 
where    Fp0(e)   is  given by equation  (A45). 

Regardless  of whether    pck = 0 or p^ i 0,   equation  (A36)   is  greatly 
simplified by the specialization to    z\ =  1   (infinitely thin crushed material). 

41 



Thus,   for    efc =  1,  equation   (A36)   can be integrated;   and    z = y(Rp/R)   can be 
substituted as  follows: 

Fcl(z) = 2z(l - z) 

'Rr 
Fci(y) =2 rM1 -y r =2 

(A52) 

Regardless of whether pck = 0 or / 0 and whether e^ = 1 or f  1, equation 
(A45) is greatly simplified by the assumption that the payload stress and 
force maintain their initial penetration values throughout the penetration 
stroke, that is 
which is unity. 

the assumption that Fp0(e) can be represented by Fpo(0), 
Thus, the assumption has the form 

^po(e) po (0) (A53) 

Equations (A52) and (A53) can be used individually or together in the govern- 
ing equations for p^ ?! 0 or for Pck = ° whenever the simplifying 
assumptions are appropriate. 

If the assumption of equation (A53) is made (constant penetration 
resistance) and if pck  = 0 (constant mass), equations (A41) can be decoupled 
by a change of variable, regardless of whether e^ = 1 or f  1, as can equa- 
tions (A51), which are specialized for Pck = °- 

The governing equations 
(A48) through (A51) will be rewritten, however, for efc = 1, that is, equa- 
tions (A52), as well as the assumption of equation (A53). The change of 
variables is 

_ q 
Rp 

Vr 

R 

V = 
dq/dt 

/nmdge
Rp 

qP 

/ "mdSeKp 

yp - Rp E eke + y = e + y 

dqp/dt 

mdöe p 

= e de + dy = 
d_h 

k dx  dx  dx 

"N 

de  dy 
dx  dx 

> 
(A54) 

J 

With the first and second of equations (A54) and the first of equations 
(A52), as well as equation (A39), equation (A48) becomes 

iw,  , ,,..?,   „     y[(R/Rp) - y] g 
:md 

1 d(v2) _ 
2 dy    " nmdge 

2K. 
P 1 + Cmco/mpo^ 

(A55) 
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Equation  (A55)   integrates  immediately to 

.y 

v2 = v0
2 + 2 > f    I !&!i dr  - v  2  + _2fflL_      2V2[(R/Rp)   -   (2/3)/] 

The same substitution in equation   (A50)   gives 

apok      /R  \2  2(Rp/R)y[l  -   (Rp/R)y] 
ao    ~ yRp) 1 +   (mco/mpo) 

and equations   (A55)   and  (A56)   apply until payload penetration starts  at 
CTpok/°o =  1  in equation  (A57), which then becomes 

(A56) 

(A57) 

m 

Rp^s + 2  1 + 
CO 

m. po 
(A58) 

where ys is the dimensionless displacement at the start of penetration. 

After penetration begins, equations (A51) apply. They become, with 
equations (A52), (A53), and (A54), 

np 1  d(vp
2) 

md 2    dyt n   ,g md6e 

1  d(v2)   _       g 
2    dy 

Kp{2y[(R/Rp)   -  y]   -  lj 

md5e m /m co' po 

*> 

(A59) 

J 

Equations (A59) are uncoupled. The first equation integrates immediately to 

Vr + 2 
Ve 

(yp - ys) (A60) 

and the second to 

v vs
2 + 2 

n ,g   m /m 
mdöe   co po 

R_ 
(y + ys) + 3 (y2 + yys + ys

2) (y - ys) 

(A61) 

where vs is the dimensionless velocity corresponding to y . 

Equations (A55) through (A61) are the governing equations for infinitely 
thin crushed material (ek = 1) and constant mass (pck = 0), with the assump- 
tion of constant penetration resistance (Fpo(e) = 1) required after payload 
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penetration but not before.     In the  absence of penetration,  equation   (A56) 
can be used to determine    ymax    by setting    v = 0.    Thus    ymax    is the solu- 
tion of the cubic equation 

2KPymax[^V   -   (2/3)w]        ^max      y2_0 

1 +  (mco/mpo) nmdge o 

The dimensionless velocity    vs    at which penetration starts   (if any)   can be 
determined by writing equation   (A56)   as 

v.2 = v 2 + 
2gys        2Kpys

2[(R/Rp)   -   (2/3)ys] 
(A63) 

s o        n    g 1 +  (m    /m    ) 
mdse ^ co'   po-7 

where    ys    is the solution of equation   (A58).     Then the maximum payload 
dimensionless displacement    yp with penetration is  determined by equa- 
tions   (A60)   and  (A63)  with    vp = 0  as 

v0
2 +  2Kpys(l  - (ys[(R/Rp)   -   (2/3)ysj/[l + (mco/mpo)]|) 

yPmax = 2[Kp -   Cg/n^J (A64) 

A similar procedure with equations   (A61)   and  (A63)   and with    v = 0 gives 
ymax    as the solution of the cubic equation. 

2Kp 

m    /m 
co    p 

_ E (y2     + y     y   + y 2) - 2- (y       + y ) + 1} (ymax " ^ 13   iymax      'max^s      ys  J       Rp   ^max      } sJ j      max        * 

2gyniax ZKpy^ftR/Rp)   -   (2/3)ys] 

(A65) 

It should be noted that ypmax is generally sufficient for design problems 
involving payload penetration and that equation (A65) for ymax is included 
only for completeness and possible checking purposes. 
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APPENDIX B 

SAMPLE CALCULATION FOR DESIGN BY SIMPLIFIED MODEL 

WITHOUT PAYLOAD PENETRATION 

Under the assumptions that pck = 0, e^ = 1, and g = 0 (simplified 
model), a calculation is performed in this appendix to yield a design of a 
crushable casing for the following conditions: 

U0 = 300 ft/sec 

ed = 0.7 

em = 0.8 

np   = 2000 ^max 

Wpo = mp0ge = 
10° lb 

Rp =0.6 ft 

Payload penetration prevented by bonding 
if necessary 

The calculation corresponds to case 1 in table 1, as indicated by the last 
four of the above conditions. The calculation follows: 

"°2    -  ^i2-      =2.331 
(npmaxge)Rp  C2000)(32.17)(0.6) 

From figure 8 for ej = 0.7 

RP 
_=0.286   or   R = ö^= 2.097 ft 

From figure 9  for    ed = 0.7 with    Rr)/R = 0.286, 

Jma =  2.74 

Uo2 

check:    -^ TTR 
=   C2.331) (0 .286)   = 0.6665 

Pmax8eJ 

From figure 6 
q nmax      _   _.,. 

zmax = —ö~= °-500 
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or 

q = 0.500(2.097)   =  1.049  ft 
^max 

From figure  7 for    e^ = 0.7 

Jma = 2.74   (check is perfect to 3 places; therefore use 2.74) 

From figure  12 with    Rp/R = 0.286, 

NmCT =  55.5 

emJma = 0.8(2.74)   = 2.192 

Seed 

U° (300)2 

52-17(0'7)    =   2.503X10-1*  ft"1 

"Jma^po 

Nma,R  3(144)   "   (55-5),(0.216)(144) 
(2.74) (100) qn^xin-1  n^/ft —__—_—_-  0.5053x10       psi/ft 

Nma" ^p 

From equation   (27)  with    aQ    in psi 

7  19? SEA =  ±^±Z±  ft-lb/lb 
2.503xl0_lt  -   (0.5053xl0_1/ao) 

Now decide which material  to use in figure 5   (trial eliminates  the balsa-like 
class, which is  too strong for low payload weight).     From figure 5  for 
honeycomb-like material, 

try    SEA =  10,400  ft-lb/lb     at    a0 =  1,000 psi 

2   192xint+ 
SEA =  2.503      0.5053 =  10,960  ft-lb/lb 

try    SEA =  10,870  ft-lb/lb    at    aQ =  1,100 psi 

? iQ?xintt 

SEA = d#^459=1°'720£t-lb/lb 

try    SEA =  10,800  ft-lb/lb     at    aQ =  1,090 psi 

SEA - 2.5039-X0°l63  =  10-750  ft-lb/lb 
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try    SEA =  10,770  ft-lb/lb    at    aQ = 1,080 psi 

2 197x10^ 
SEA = 2.505 - 0 468 = 10>770 f*-lb/lb 

therefore 
a0 = 1,080 psi 

SEA =  10,770  ft-lb/lb 

From equation   (8), with    a0    in psi  and    SEA    in ft-lb/lb 

p    g    _ £m(144 a0)   _   (0,8)(144)(1>080) 
McmKe SEA 10,770 H.bb  lb/It 

From equation   (17) 

m j    ij 2f 

- CO =    mq  °    m    =       (2.74) (300)2 (0.8)     _ 
mpo + mco      ge(SEA)ed       (32.17)(10,770) (0.7)   "  °-8135 

"po 1 
mco      0.8135 1  =  1.229  -   1  = 0.229 

therefore 

mco 

v 4.366 

Wco  = 4.366(100)   = 436.6  lb 

wpo + wco = 100 + 436.6 = 536.6  lb 

Check by recalculating    pcmge.     From equation  (25), 

W 

Pcmge = ri^= (55.SK;?(O.216) 
= n-58 ib/ft3 

(Check  is  adequate:     use 11.56  lb/ft3.)     Check to see if bonding is necessary 
to prevent payload penetration 

/Rp\2  /        m    \ 
V \     I . CO 

1  + =-")=   (0.286)2(5.366)   = 0.4386 W 
From figure  10 
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zs = 0.325 

Zmax  qmax  qPmax  0.500 1.538 >  1.000 
zs qs qs 0.325 

Therefore bonding is necessary to prevent payload penetration. 
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APPENDIX C 

SAMPLE CALCULATION FOR DESIGN BY SIMPLIFIED MODEL 

WITH PAYLOAD PENETRATION 

A sample calculation is given for an approximate design of a crushable 
casing under the assumptions that p^ = 0, e^ = 1, and g = 0 (simplified 
model) together with Fp0(e) = 1 for penetration. The design conditions are 
the following: 

U0 = 300 £1 -/sec 

ed = 0.7 

em =  0.8 

np   £ 2000 

o0  = 1200 psi for balsa-like material 

Wr,0 = m g = 450 lb 'po po°e 

Rp =  1.2 ft 

Payload penetration permitted  (unbonded) 

The  last four conditions  indicate that case 11 of table  1 is being calculated. 
From figure 5  for balsa-like material, 

SEA =  24,000  ft-lb/lb 

From equation   (8),  with    aQ    in psi  and    SEA    in  ft-lb/lb 

D a    - £m(144 P°3 - (0-8)(144)(1,200) , 
Pcmge SEA 247ÖÖÖ ~ " 5 ' 76 lb/£t 

From equation (22) with aQ in psi (for penetration) 

n    - ffRp2(144 °0) - <l-44) (144) (1,200) _ . ._. 
Pmax     m g 450 i,/^>/ 

potoe 

For iteration with figures 11 and 12, calculate 

u°2    x    1       smL 0.959 2Ed VnPmaxgeRp / lA   C1737) (32.17) (1.2) 
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1 + 0.959 = 1.959 

(1 + 0.959)2 = 3.838 

SEA   _   24,000 = 14_385 
nD  e R   1737(0.8)(1.2) 
r'max m p 

mco 
first  = 1.0 (guess) 

po 

first N  = 1 * ^1° = 0.5213 
mu   3.838 

From figure 11 for e, = 0.7 

From figure 12 

first    NDII = 0.8435 
KU 

f.     .     RP      0.8435       .   ,„A, 
firSt    R-=059-= °-4306 

first    Nma =  15.5 

m i q  q 
second     =  ., .   *       =  1.078 

m 14.385 po 

... 1  +  1.078       „  r.nr second    N      = —_   __0—= 0.5415 
mu 3.838 

From figure  11  for    e, = 0.7 

From figure  12 

second    N      = 0.838 
KU 

R 
j       V       0.838       _.   .« —r> second    _ = -_ = 0.4278 

second    Nma =  15.75 

m 1 r     -7r- 
j-\. ■   J       c0 15.75 n   __,. 
third      = ■..■VTor" =  1-095 

m 14.385 po 

third    N       = l 1  l'0o
9S = 0.5460 mu 3.838 

From figure  11  for    e, = 0.7 
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Third    NRU = 0.8368 

From figure  12 

third    Nma =  15.75   (same as  second) 

^=0.4273, R = _|i|_=2.807ft 

m 
-^ =  1.095 m po 

Wco = 450(1.095)   = 493  lb 

Wpo + Wco = 450 + 493 + 943 lb 

Check by recalculating    p    g 
cnre 

From equation   (25) 

W 
_ co 493 

P°mSe  = N    TTR   
3  =   (15.75) (TT) (1.728)   =  5-767  lb/ft3 

1,ma"np 

(Check is  adequate:     use 5.76  lb/ft3) 

Check that penetration occurs  for this    m    /m      and R /R 
co    po P' 

\\2/       mco 
1  + _£2.J=   (o.4273)2(l  +  1.095)   =  0.3825 m 

P°, 
From figure 10 

z    = 0.257 s 

From equation   (5)  with    L = 0 

ZPmax =  £d^  "  R~) = 0-7(0.5727)   = 0.40089 

pmax _  qPmax      0.40089 
~^T = "qj" =    0.257    =  U56  >  ^O00 

Therefore penetration does  occur 
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APPENDIX D 

COMPUTER PROCEDURES FOR THE GOVERNING EQUATIONS 

WITH SPHERICAL GEOMETRY 

The computer procedures described for spherical geometry in this appendix 
form an essential part of the so-called "detailed" analytical model but can 
also be specialized for a variety of less detailed models. There are three 
computer procedures. 

BASIC COMPUTER PROCEDURE 

The first computer procedure described is the "basic" procedure.  It 
cannot be regarded as a design since it contains no provision for automatic 
determination of crushable casing parameters to achieve a desired acceleration 
and/or a desired ratio of stroke to available stroke. The primary purpose of 
the basic procedure, then, is to check the adequacy of designs which have been 
determined by other means (for example, designs determined by the simplified 
model employing figs. 5 through 12). 

With symbols defined in the section on notation or in parentheses, the 
basic procedure contains the following steps: 

1. Input and print the following:  case number, Wp0, Rp, U0, ed> 
em> 

nmd> § ' 8T» 2m (value of S for ecluation of motion), ga (value of g for 
acceleration ratio), ekm (value of eR for equation of motion), eRa (value 

of ek for acceleration ratio), eks (value of ek for stress ratio), Pckmge 
(value of pckge for equation of motion), pckage (value of pckge for 
acceleration ratio), PcksSe (value of pckge for stress ratio), Fpom(e) 

(value of Fpo(e) for equation of motion), Fpoa(e)  (value of Fp0(e) for 

acceleration ratio). Also input and print trial values of R and a0. 
Finally, input and print whether the payload is considered perfectly bonded 
or perfectly unbonded to the crushable material, whether the SEA is computed 
from a0 or selected, whether the material is considered to be balsa-like or 
honeycomb-like (important only if SEA computed), and the value of SEA if 
selected. Note that Pckmge> Pckage» 

or PcksSe often is specified as pcmge> 
to be calculated in step 2. Note also that Fpom(e) and Fpoa(e) is specified 

as a constant, usually 1.00, or as the integral of equation (A45). 

2. Calculate and print the following constants:  ppge (from eq. (A43) 
with mp0 = Wp0/ge), SEA (from eq. (9) if calculated for balsa-like or 

eq. (10) if calculated for honeycomb-like), pCmge (from eq. (8) with 

factor for dimensions), Wco (from Wco = (4/3)TT(R
3
 - Rp

3)pCmSe)J ^Co  + Wpo> 

gm/nmdge> Sa/nmdge> wo2 (from the first of eqs. (A33)), KR (from the last of 
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eqs. (A33) with m^0 =  Wp0/ge and a factor for dimensions), and Ppnge (from 
eq. (A35) with mpo = Wpo/ge). 

3. Generate and print values of Fclm (from eq. (A36) with ekm of 
step 1) and w2 (from the equation of motion, eq. (A37) , with eq. (A34) and 
with ekm, gm> and Pckm of step 1) for selected values of z (z = q/R). 
Terminate the integrations at the lowest positive value of w2 when z is 
varying by increments of 0.0001.  Print this value of z separately and label 
it Zp    without penetration. Calculate L/R according to equation (5) with 
ZPmax = ^Pmax^' Print it; separately, and label it L/R without penetration. 

4. Generate and print values of Fcis (from eq. (A36) with eks of 
step 1) and the stress ratio Gp0k/a0 (from eq. (A38) with eq. (A34) and with 
Eks and Pcks °f step 1) for selected values of z. With z varying by incre- 
ments of 0.0001, terminate the calculations at z = 1.00 or at the lowest 
positive value of 1 - (ap0k/c0), whichever occurs at a lower z value. Print 
the termination value of z separately and label it zs. Calculate 
Zp  /zs, print it separately, and label it zn  /z<- without penetration. Fmax i" r Pmax b        y 

5. Generate and print values of Fcia (from eq. (A36) for eka °f 
step 1) and deceleration ratio np/nm(j (from eq. (A32) with eq. (A34) and with 
£ka> ga> and Pcka from step 1) for selected values of z. Terminate the 
calculations at zp    without penetration. 

6. If the payload is bonded or if zp  /zs ^ 1.00 without penetration, 

terminate the program at step 5.  If the payload is unbonded and if 
Zp  /zs > 1.00 without penetration, proceed into the penetration phase.  For 

penetration, calculate the constant Kp according to the last of equations 
(A39) and calculate four initial conditions according to equations (A40). 

7. Generate and print values of y, e, dy/dx, and de/dx for selected 
values of x (x = t/nmdge/Rp) by integrating the two simultaneous ordinary 
differential equations (A41), with auxiliary equations (A42) through (A45), 
with initial conditions described in step 6, with Fclm(y) determined as in 
step 3 when (Rp/R)y is substituted for z, with Fpom(e) being the integral 
of equation (A45) or a constant according to the specification in step 1, and 
with ekm> gm> and pckm being the values of step 1. Terminate the integra- 
tion when dy/dx is zero to four or more decimal places and when successive 
values agree to four or more signifcant figures for the worst of y, e, and 
de/dx. %The corresponding value of y is called ymax> and the corresponding 
values of e and de/dx are initial conditions for the next phase of the 
problem. 

8. With the initial conditions just described, generate and print values 
of e and de/dx for selected values of x by integrating the first of equa- 
tions (A41) with d2y/dx2 = 0. Terminate the integration when de/dx is 
zero to four or more decimal places and when successive values of e agree 
to four or more significant figures. The corresponding value of e is called 
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emax-  Calculate zpmax from zpmax = (Rp/R)(ymax 
+ ekmemax)>  as deducible from 

equations (A39) with Zp = qp/R. Also calculate L/R from equation (5), and 
calculate Zn  /zc. Print zr>  , L/R, and zv      /zs labeled "with Pmax s ^max' ^max b 

penetration." 

9. Generate and print values of the deceleration ratio np/nmcj for 
selected values of x according to the first of equations (A41) with auxili- 
ary equations (A42), (A43), and (A45).  The quantity Fp0a(e) 

is the integral 
of equation (A45) or a constant according to the specification in step 1; and 
eka» Sa> and Pcka are tne values of step 1. Step 9 terminates the basic 
procedure when penetration is present. 

SEARCH FOR OVERALL RADIUS R 

The second computer procedure described is a design procedure in which 
a0 is assumed given but iterations are automatically performed to determine 
R for a desired ratio of stroke to available stroke. The desired ratio is 
unity in the present case, that is, L/R = 0; but the available stroke leaves 
a margin of safety based on the fictitious compacting strain e^. 

This procedure is based partially on a modified basic procedure. The 
modifications include the specification of ndes/nmd (i.e., the desired value 
of np  /nmd) and the determination and printout of za (i.e., the value of 

z at np = npmax) and ß (i.e., (npmax/ndes) -1). The quantity ß is 

calculated as a measure of the acceleration discrepancy. 

The next step is to iterate the modified basic procedure just described 
in order to achieve a low value of L/R. As a start, the procedure is run for 
two values of R, the selection being based on the design charts, figures 6 
through 9, or any other analytical or experimental information suggesting 1 
values of L/R. The results are labeled (L/R)! for Rx and (L/R)2 for R2. 
Then the iteration is based on successive straight lines of the form: 

ow 

L/R = aR + b (Dl) 

For the starting values (L/R)1, Rx  and (L/R)2, R2J the first pair of 
straight lines from equation (Dl) is 

(L/R)! = a^Ri + b(l) 

(L/R)2 = a
(1)R2 + b(1) 

and the computer determines a^ J and b   by solving the two simultaneous 
equations.  From equation (Dl) for L/R = 0 (which is the desired value), the 

computer then determines R   as 
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R(l)   =  .[bCD/aCD] 

Then R^      is run through the modified basic procedure to determine   (L/R)(l). 
This result is  combined with the two starting values,   and the two having the 
lowest  absolute values of    L/R    are selected for a new pair of starting values, 
The process  is repeated until 

|L/R|   <  0.0005 

provided that each new value of |L/Rj  is lower than at least one of its two 
starting values. 

If a new value of  j L/R|  is higher than either of its starting values, 
the computing machine is stopped, and new starting values must be selected. 
This did not happen for any of the cases reported herein, all of which con- 
verged rapidly (requiring an average of 0.17 min of execute time per case 
without penetration and 4.55 min for the detailed model with penetration). 
In contrast, there was one unrelated case that did not converge.  For this 
case, however, convergence could not have been expected.  It turned out that 
the given impact velocity was too high for a feasible energy absorbing design 
with the given material, and hence too high for a solution. 

SEARCH FOR OVERALL RADIUS R AND CRUSHING STRESS a 
o 

The third computer procedure used herein is a search for R and a , which 
is simply an extension of the search for R just described (except that pene- 
tration is not included since eq. (28) determines a0 for penetration). In 
the search for R and a0, both R and a0 are varied in an attempt not only to 
make L/R = 0 but also to make ß = 0, where ß = 0 when the maximum accelera- 
tion load factor np    equals the desired load factor nAa   . 

^max   l aes 

This additional requirement, ß = 0, makes the iterations more complicated 
than before although the modified basic procedure to be iterated is the same. 
This time the starting values are found by running the basic procedure for 
three combinations of R and a0.    Again, one of the starting values can be 
determined by the design charts for the simplified model, figures 6 through 9, 
together with modifications based on experience for other models and/or other 
preliminary information (such as analyses or experiments performed on similar 
configurations). Experience indicates that the other two starting values 
should be small deviations from the first in which the higher values of o0 

correspond to the lower values of R. The starting values are labeled (L/R)1 

and ß! for Rx and a0l,   (L/R)2 and ß2 for R2 and a02,   and (L/R)3 and ß3 
for R3 and ao3. The iterations are based on successive pairs of planar 
surfaces having the form 

L/R = aLüa0 + aLRR + aL (D2) 

ß = agao0 + agRR + aß (D3) 
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For the three sets of starting values just labeled, the first group of 
three planes from equation (D2) is 

(R) -  ^s * #*, * a(l) aL 
CO and the computer solves the three simultaneous equations to determine ^ 

a^l\   and a.^l\    Similarly, the first group of three planes from equation (D3) 
LR Li 

IS 

h =  a^oi + 
ßa oi       m a<i>R, <■ a'1' 

CO and the computer determines a^ , agR , and a 

Then L/R and 3 are set equal to the desired value of 0 in equations 
(D2) and (D3), and the coefficients just determined are substituted to give 

fl)a(l) + ad)R(l) = _a
Cl) 

aLa °°     LR K     aL 

„CO-CO + acoRco  _ _aco 
aßa °o  + aßR R       3 

The computer then solves the two simultaneous equations and determines 

(hopefully) an improved pair of parameters aQ  and R 

The parameters ad      and R^   are introduced into the modified basic 

procedure to determine the corresponding values of (L/R)   and 3  . This 
result is combined with the three sets of starting values, and the three hav- 
ing the lowest values of |L/RJ + |ß|  are selected for new starting values. 
The process is repeated until 

|L/R| < 0.0005 

|ß| < 0.0005 

with the requirement that each new value of |L/R| + |ß|  is lower than at 
least one of its three starting values. 
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The computing machine is stopped, analogously to the R search, if a 
new value of |L/R| + |ß|  is higher than any of its starting values; and new 
starting values must be selected (where the selection can often be facilitated 
by a plot having R and a0 as axes with values of |L/R[ + |g|  indicated by 
vectors or with values of L/R and 3 indicated by vectors).  In contrast to 
the R search, new starting values had to be selected fairly frequently for 
the search for R and a0 (specifically, for roughly one-fourth of the cases), 
despite the fact that convergence was rapid when it occurred (0.7 min of exe- 
cute time per case for the detailed model). 

For all but one of the cases requiring a new set of starting values, 
convergence occurred for the second or third set. The exceptional case (not 
listed in table 1) was an attempt to do the detailed model by the R and a0 

search so as to match an np    of 2000 selected for the simplified model. 

For the landing configuration under consideration, however, R searches for 
different values of a0    indicated that an np    as high as 2000 cannot be 

attained with the detailed model. Hence the iterative method would have been 
wrong if it had converged to an np    of 2000 in a search for R and c0. 
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APPENDIX E 

EXACT INTEGRATION FOR A CLASS OF IMPACT PROBLEMS WITH 

VARIABLE MASS BUT WITHOUT PAYLOAD PENETRATION 

The class of impact problems to be considered is shown in figure 3(b). 
This shows a general vertically symmetrical landing geometry for zero shear 
resistance and uniform compacting strain with the impact to be described before 
payload penetration occurs (if any). Equation (A19) defines the problem, and 
all assumptions leading to that equation are retained. 

One additional assumption is introduced, namely, a uniform and isotropic 
crushing stress (a = c% = constant). Then equation (A19) becomes 

1 GkCAnh dq) 

1 d^ =S  d* - m  + m  - (p kV /e. ) ™ po   co    ck c & 

where the equation has been multiplied by dq and where Vc has been 
introduced according to the second of equations (A14). 

The area Acih is the planar area of crushable material that is flush 
with the landing surface in figure 3(b), and Vc is the volume of the dotted 
region in figure 3(b).  Hence, 

Acih dq = dVc (E2) 

When equation (E2) is introduced into equation (El), each term in the latter 
equation becomes a total differential, and the exact integration is 

e  a I p i V 
1 U2 =  gq + JUS log m  +m  --£*-£]+ C (E3) 
2 SH  Pck   

5e\ po   co    eR ' 

where C is a constant of integration. This constant can be evaluated by 
noting that at q = 0, U = U0, and Vc = 0.  When the evaluated C is intro- 
duced in equation (E3), the result is 

e, a. 

\ cu0* - u*) = -gq + ^ l0^e"    r       rq 
CK h /' A , dh /e, (m  + m ) 

sh  c k po   co 

(E4) 

f where Vc has been replaced by I  Ash dhc as in the second of 
equations (A14) . •'o 
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Equation   (E4)   gives    U    in terms  of    q    and can be simplified if the    gq 
term is neglected  (as  is  justified for most  impacts).     Then it is  convenient 
to reintroduce    Vc    and let  it be  the only variable  on the right-hand side. 
Thus, 

ov u2) 
ekak 

ck 
log 

6  1  -   [pckVek(mpo + mco>] 
(E5) 

When    U = 0,  Vc    has  reached its maximum value,  Vc       .     Thus, with the natural 
in cLX 

log converted to an exponential: 

max 

e, (m_  + m    ) k    po c.n co' 

ck 

CpckUo2/2ek^' 
(E6) 

It is implicit in the derivation of equation (A13) that Vc + Vcl = V^/E^, 
where Vel is the volume of mcl  in figure 3(b); and the same relationship 
applies for the maximum volumes. Hence, if it is desired, equation (E6) can 
be written 

'c   + Vcl cmax     max 

v + m CO 
ck 

(pckUo2/2ekV 
(E7) 

Equation (E7) agrees exactly with equation (1-4) in appendix A of 
reference 2 when notational differences are accounted for. The development in 
reference 2 includes shear resistance implicitly (by showing uplift of the 
compacted region in a figure) but counteracts the inclusion of shear by assum- 
ing Aci to be a horizontal planar area and thereby rendering the shear 
stresses ineffective in energy absorption. Thus, with the results in agree- 
ment and the assumptions reconciled, the development of equations (E4) through 
(E7) becomes a partial check on the present methods as well as a set of exact 
results for a special case of variable mass in the absence of payload 
penetration. 
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Average crushing stress, cr 

Typical material 
tf) 
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Assumed 
material 

.5 
Strain 

(a)   Stress-strain curves, 

Compacting 
strain, € 

1.0 

Load 

Y~ Plate 

Crushed material 

Uncrushed crushable 
///////////////////////////)//////////// material 

(b) Crushing test with plate. 

Load 
Plunger 

Crushed material 

-Uncrushed crushable material 
7777777777777777777777777777777777777777 

(c) Crushing test with plunger. 

Figure 1.- Typical stress-strain curves and crushing tests. 
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Figure 7.- Mass design chart for simplified model without penetration when R 
is given. 
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R, 

R 

Upper boundary of 
compacted material 
if €m were replaced 
by ed 

Compacted material 
based on € 

max 

qmax = qpmax-^d(R~Rp) 

U, 

(nn       gP)Rn Pmax ^e     P 

Figure 8.- Radius ratio design chart for simplified model without penetration 
when Rp is given. 
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Figure 9.- Mass design chart for simplified model without penetration when R 
is given. 
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model without bonding. 
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Po Vm, 
1000 Nma = 

100 

N mo- 

Pcm7rRp       ^cmge^Rp3     </>Cm9e)7rRp3 

nPmax ^mRp  ^ mP° 

with Fpo(e) = l, PCK = 0, €K = I 

for payload penetration 

Figure 12.- Mass design chart for simplified model with penetration when Rp 
is given; also simple mass-volume relation. 
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Honeycomb-like material 
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Figure 13.- Crushable casing properties and performance as functions 
and ppge for honeycomb-like material, a payload weight of 100 lb 
payload maximum load factor of 2000. 
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See part (a) for design conditions 

o    O    Simplified model 1 without penetration 
D    A    Detailed model    J 

k    ö     Simplified model    with penetration 
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Figure 13.- Continued. 
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See part (a) for design conditions 
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Figure 14.- Crushable casing properties and performance as functions of Rp and 
ppge for balsa-like material and a payload weight of 450 lb. 
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See part (a) for design  conditions 
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